Determination of the Volatile Composition in Brown Millet, Milled Millet and Millet Bran by Gas Chromatography/Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
RI | Compound name | Peak area (%) ± SD | Identification | ||||
---|---|---|---|---|---|---|---|
BM | MM | MB | |||||
Aldehydes | |||||||
803 | Hexanal | 12.82 ± 0.42 | 7.49 ± 0.42 | 7.69 ± 0.27 | MS,RT | ||
848 | ( E)-2-Hexenal | 0.22 ± 0.03 | 0.11 ± 0.01 | 0.23 ± 0.02 | MS,RT | ||
903 | Heptanal | 2.01 ± 0.07 | 0.75 ± 0.11 | 2.90 ± 0.09 | MS,RT | ||
953 | ( E)-2-Heptenal | 2.47 ± 0.03 | 1.29 ± 0.04 | n.d. | MS,RT | ||
1002 | Octanal | 0.44 ± 0.03 | 0.19 ± 0.01 | 0.44 ± 0.06 | MS,RT | ||
1016 | ( E,E)-2,4-Heptadienal | 0.24 ± 0.02 | 0.12 ± 0.02 | 0.16 ± 0.03 | MS,RT | ||
1045 | Benzeneacetaldehyde | 0.25 ± 0.01 | 0.96 ± 0.05 | 2.03 ± 0.09 | MS,RI | ||
1057 | ( E)-2-Octenal | 1.54 ± 0.07 | 0.91 ± 0.17 | 1.55 ± 0.05 | MS,RT | ||
1106 | Nonanal | 3.50 ± 0.23 | 2.23 ± 0.13 | 5.89 ± 0.17 | MS,RT | ||
1163 | ( E)-2-Nonenal | 1.84 ± 0.14 | 2.63 ± 0.16 | 5.62 ± 0.18 | MS,RT | ||
1208 | Decanal | 0.53 ± 0.02 | 0.46 ± 0.04 | 1.06 ± 0.10 | MS,RT | ||
1218 | ( E,E)-2,4-Nonadienal | 0.46 ± 0.02 | 0.35 ± 0.03 | 0.42 ± 0.02 | MS,RT | ||
1312 | ( E,E)-2,4-Decadienal | 4.43 ± 0.48 | 3.36 ± 0.17 | 2.49 ± 0.36 | MS,RT | ||
1409 | Dodecanal | n.d. | 0.05 ± 0.01 | n.d. | MS,RT | ||
1509 | Tridecanal | 0.37 ± 0.04 | n.d. | 0.27 ± 0.02 | MS,RT | ||
1614 | Tetradecanal | 0.65 ± 0.09 | n.d. | n.d. | MS,RT | ||
1716 | Pentadecanal | 2.43 ± 0.14 | 0.87 ± 0.06 | 0.93 ± 0.05 | MS,RT | ||
Subtotal | 34.21 ± 0.96 | 21.76 ± 1.05 | 31.65 ± 0.20 | ||||
Benzene derivatives | |||||||
855 | Ethyl-benzene | n.d. | 0.03 ± 0.00 | n.d. | MS,RT | ||
868 | 1,3-Dimethylbenzene | 0.18 ± 0.02 | 0.07 ± 0.00 | n.d. | MS,RI | ||
1114 | 1,2,4,5-Tetramethylbenzene | n.d. | n.d. | 0.19 ± 0.01 | MS,RI | ||
1179 | Naphthalene | 4.93 ± 0.26 | 2.35 ± 0.15 | 6.75 ± 0.34 | MS,RT | ||
1284 | 2-Methylnaphthalene | 8.87 ± 0.54 | 5.36 ± 0.21 | 14.18 ± 0.26 | MS,RI | ||
1305 | 1-Methylnaphthalene | 3.64 ± 0.28 | 2.30 ± 0.05 | 5.61 ± 0.39 | MS,RT | ||
1351 | Biphenyl | 0.83 ± 0.04 | 0.14 ± 0.01 | 4.95 ± 0.58 | MS,RI | ||
1366 | 1-Ethylnaphthalene | 1.58 ± 0.08 | 2.30 ± 0.07 | n.d. | MS,RT | ||
1426 | 1,6-Dimethylnaphthalene | n.d. | 2.37 ± 0.07 | n.d. | MS,RI | ||
1436 | Diphenylmethane | 0.36 ± 0.02 | 0.24 ± 0.00 | 0.46 ± 0.05 | MS,RI | ||
1566 | Fluorene | 0.69 ± 0.03 | 0.35 ± 0.02 | 0.51 ± 0.02 | MS,RI | ||
1794 | Phenanthrene | 0.59 ± 0.16 | 0.39 ± 0.01 | 0.29 ± 0.03 | MS,RI | ||
Subtotal | 21.67 ± 0.76 | 15.90 ± 0.30 | 32.94 ± 1.57 | ||||
Alcohols | |||||||
766 | 1-Pentanol | 1.16 ± 0.11 | n.d. | 0.31 ± 0.03 | MS,RT | ||
872 | 1-Hexanol | 2.41 ± 0.13 | 0.86 ± 0.09 | 1.42 ± 0.03 | MS,RT | ||
982 | 1-Octen-3-ol | 0.28 ± 0.03 | 0.46 ± 0.05 | 0.98 ± 0.12 | MS,RT | ||
1069 | ( Z)-2-Octen-1-ol | n.d. | n.d. | 0.38 ± 0.02 | MS,RI | ||
1079 | 1-Octanol | 0.21 ± 0.01 | n.d. | 0.14 ± 0.02 | MS,RT | ||
Subtotal | 4.06 ± 0.20 | 1.31 ± 0.14 | 3.23 ± 0.10 | ||||
Ketones | |||||||
891 | 2-Heptanone | 1.03 ± 0.05 | 0.38 ± 0.03 | 0.26 ± 0.01 | MS,RT | ||
974 | 1-Octen-3-one | n.d. | n.d. | 0.29 ± 0.02 | MS,RI | ||
983 | 2,5-Octanedione | 0.19 ± 0.03 | 0.07 ± 0.02 | n.d. | MS,RI | ||
1036 | 3-Octen-2-one | 0.30 ± 0.01 | n.d. | n.d. | MS,RT | ||
1065 | Acetophenone | 0.14 ± 0.01 | 0.06 ± 0.01 | 0.14 ± 0.01 | MS,RI | ||
1086 | ( E,E)-3,5-Octadien-2-one | 0.75 ± 0.02 | 0.59 ± 0.03 | 0.08 ± 0.01 | MS,RI | ||
1135 | 3-Nonen-2-one | 0.08 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.00 | MS,RT | ||
1859 | 2-Heptadecanone | 0.60 ± 0.05 | n.d. | n.d. | MS,RI | ||
1921 | ( E,E)-6,10,14-Trimethyl-,9,13- | 1.73 ± 0.11 | 0.50 ± 0.04 | n.d. | MS,RI | ||
pentadecatrien-2-one | |||||||
Subtotal | 4.82 ± 0.05 | 1.63 ± 0.11 | 0.81 ± 0.03 | ||||
Hydrocarbons | |||||||
1200 | Dodecane | 0.88 ± 0.04 | n.d. | n.d. | MS,RT | ||
1300 | Tridecane | 0.12 ± 0.01 | 0.09 ± 0.01 | n.d. | MS,RT | ||
1500 | Pentadecane | 1.02 ± 0.12 | 0.88 ± 0.05 | 1.77 ± 0.21 | MS,RT | ||
1600 | Hexadecane | 1.75 ± 0.15 | 1.42 ± 0.08 | 2.28 ± 0.13 | MS,RT | ||
1700 | Heptadecane | 0.74 ± 0.22 | 0.92 ± 0.04 | n.d. | MS,RT | ||
1800 | Octadecane | 0.39 ± 0.08 | 0.69 ± 0.03 | 0.58 ± 0.03 | MS,RT | ||
1900 | Nonadecane | n.d. | 0.87 ± 0.04 | 0.32 ± 0.03 | MS,RT | ||
Subtotal | 4.90 ± 0.37 | 4.86 ± 0.10 | 4.95 ± 0.35 | ||||
Acids | |||||||
1765 | Tetradecanoic acid | 0.29 ± 0.01 | 0.31 ± 0.03 | n.d. | MS,RT | ||
1833 | Pentadecanoic acid | n.d. | 0.47 ± 0.04 | 0.37 ± 0.01 | MS,RT | ||
1951 | Hexadecanoic acid | 16.43 ± 1.28 | 35.77 ± 1.62 | 8.98 ± 0.29 | MS,RT | ||
Subtotal | 16.72 ± 1.29 | 36.54 ± 1.65 | 9.35 ± 0.29 | ||||
Esters | |||||||
1264 | Propyl benzoate | n.d. | 0.16 ± 0.01 | 0.17 ± 0.01 | MS,RI | ||
1334 | Benzoic acid, butyl ester | 0.81 ± 0.07 | 0.21 ± 0.00 | 1.76 ± 0.14 | MS,RI | ||
1936 | Hexadecanoic acid, methyl ester | n.d. | 0.24 ± 0.02 | n.d. | MS,RT | ||
1968 | Hexadecanoic acid, ethyl ester | 0.98 ± 0.05 | n.d. | 0.24 ± 0.03 | MS,RI | ||
Subtotal | 1.79 ± 0.09 | 0.61 ± 0.03 | 2.18 ± 0.17 | ||||
Heterocycles | |||||||
812 | 3-Furaldehyde | n.d. | n.d. | 0.27 ± 0.03 | MS,RI | ||
829 | Furfural | n.d. | 0.04 ± 0.00 | 0.05 ± 0.01 | MS,RI | ||
865 | 2-Furanmethanol | n.d. | n.d. | 0.13 ± 0.01 | MS,RI | ||
907 | 1-(2-Furanyl)-ethanone | n.d. | n.d. | 0.27 ± 0.01 | MS,RI | ||
992 | 2-Pentylfuran | 3.73 ± 0.08 | 2.94 ± 0.14 | 5.11 ± 0.18 | MS,RT | ||
Subtotal | 3.73 ± 0.08 | 2.98 ± 0.13 | 5.83 ± 0.21 | ||||
Sulphur-containing | |||||||
916 | Diethyl disulphide | 0.11 ± 0.02 | 0.04 ± 0.01 | 0.04 ± 0.01 | MS,RT | ||
1025 | 2-Acetylthiazole | 0.13 ± 0.01 | 0.08 ± 0.01 | 0.28 ± 0.05 | MS,RI | ||
1220 | Benzothiazole | 0.09 ± 0.01 | 0.32 ± 0.00 | 0.43 ± 0.04 | MS,RI | ||
Subtotal | 0.33 ± 0.02 | 0.44 ± 0.01 | 0.74 ± 0.05 | ||||
Total | 92.32 ± 4.82 | 86.03 ± 3.25 | 91.68 ± 2.97 |
2.1. Aldehydes
2.2. Benzene Derivatives
2.3. Alcohols and Ketones
2.4. Hydrocarbons, Acids and Esters
2.5. Heterocycles and Sulphur-Containing Compounds
3. Experimental Section
3.1. Materials
BM | MM | MB | |
---|---|---|---|
Water | 10.80 ± 0.18 | 10.93 ± 0.46 | 9.07 ± 0.34 |
Protein | 6.42 ± 0.35 | 5.06 ± 0.31 | 6.78 ± 0.19 |
Fat | 5.07 ± 0.59 | 1.75 ± 0.10 | 5.65 ± 0.23 |
Ash | 1.99 ± 0.01 | 0.64 ± 0.04 | 2.15 ± 0.18 |
Carbohydrate | 75.72 ± 0.81 | 81.62 ± 0.74 | 76.35 ± 0.63 |
3.2. Reagents
3.3. Simultaneous Distillation Extraction (SDE)
3.4. Gas Chromatography-Mass Spectrometry (GC-MS)
3.5. Identification of Components
4. Conclusions
Acknowledgments
References and Notes
- Liang, S.; Yang, G.; Ma, Y. Chemical characteristics and fatty acid profile of foxtail millet bran oil. J. Am. Oil Chem. Soc. 2010, 87, 63–67. [Google Scholar] [CrossRef]
- Malleshi, N.G.; Desikachar, H.S.D.; Tharanathan, R.N. Free sugar and non-starchy polysaccharides of finger millet (Eleusine coracana), pearl millet (Pennisetum typhoideum), foxtail millet (Setaria italica) and their malts. Food Chem. 1986, 20, 253–261. [Google Scholar] [CrossRef]
- Wankhede, D.B.; Shehnaj, A.; Rao, M.R.R. Carbohydrate composition of finger millet (Eleusine coracana) and foxtail millet (Setaria italica). Plant Foods Hum. Nutr. 1989, 28, 293–303. [Google Scholar]
- Lorenz, K.; Hinze, Z. Functional characteristics of starches from proso and foxtail millets. J. Agric. Food Chem. 1976, 24, 911–914. [Google Scholar] [CrossRef]
- Ravindran, G. Seed protein of millet: Amino acid composition, proteinase inhibitors and in-vitro protein digestibility. Food Chem. 1992, 44, 13–17. [Google Scholar] [CrossRef]
- Geervani, P.; Eggum, B.O. Nutrient composition and protein quality of minor millets. Plant Foods Hum. Nutr. 1989, 39, 201–208. [Google Scholar] [CrossRef]
- Liang, S.; Yang, G.; Ma, Y. Chemical characteristics and fatty acid profile of foxtail millet bran oil. J. Am. Oil Chem. Soc. 2010, 87, 63–67. [Google Scholar] [CrossRef]
- Chow, C.K. Fatty Acids in Foods and Their Health Implications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 303–316. [Google Scholar]
- Xiong, F.L.; Yuan, L.J. Study on determination of vitamin E content in millets by high performance liquid chromatography. J. Southwest Agric. Univ. 1992, 14, 525–527. [Google Scholar]
- Choi, Y.Y.; Osada, K.; Ito, Y.; Nagasawa, T.; Choi, M.R.; Nishizawa, N. Effects of dietary Korean protein of foxtail-millet on plasma adiponectin, HDL-cholesterol, and insulin levels in genetically type 2 diabetic mice. Biosci. Biotechnol. Biochem. 2008, 69, 31–37. [Google Scholar]
- Linforth, R.S.; Taylor, A.J. Measurement of volatile release in the mouth. Food Chem. 1993, 48, 115–120. [Google Scholar] [CrossRef]
- Maga, J.A. Rice product volatiles: A review. J. Agric. Food Chem. 1984, 32, 964–970. [Google Scholar] [CrossRef]
- Champagne, E.T. Rice aroma and flavor: A literature review. Cereal Chem. 2008, 85, 445–454. [Google Scholar] [CrossRef]
- Buttery, R.G.; Ling, L.C. Importance of 2-aminoacetophenone to the flavor of masa corn flour products. J. Agric. Food Chem. 1994, 42, 1–2. [Google Scholar] [CrossRef]
- Buttery, R.G.; Stern, D.J.; Ling, L.C. Studies on flavor volatiles of some sweet corn products. J. Agric. Food Chem. 1994, 42, 791–795. [Google Scholar] [CrossRef]
- Buttery, R.G.; Ling, L.C. Volatile flavor components of corn tortillas and related products. J. Agric. Food Chem. 1995, 43, 1878–1882. [Google Scholar] [CrossRef]
- Hansen, A.; Hansen, B. Flavour of sourdough wheat bread crumb. Z. Lebensm. Unters. Forsch. 1996, 202, 244–249. [Google Scholar] [CrossRef]
- Rycchlik, M.; Grosch, W. Identification and quantification of potent odorants formed by toasting of wheat bread. Lebensm. Wiss. Technol. 1996, 29, 515–525. [Google Scholar] [CrossRef]
- Schieberle, P.; Grosch, W. Potent odorants of the wheat bread crumb: Differences to the crust and effect of a longer dough fermentation. Z. Lebensm. Unters. Forsch. 1991, 192, 130–135. [Google Scholar] [CrossRef]
- Janeš, D.; Prosen, H.; Kreft, I.; Kreft, S. Aroma compounds in buckwheat (Fagopyrum esculentum Moench) groats, flour, bran, and husk. Cereal Chem. 2010, 87, 141–143. [Google Scholar] [CrossRef]
- Prosen, H.; Kokalj, M.; Janeš, D.; Kreft, S. Comparison of isolation methods for the determination of buckwheat volatile compounds. Food Chem. 2010, 121, 298–306. [Google Scholar] [CrossRef]
- Janeš, D.; Kantar, D.; Kreft, S.; Prosen, H. Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC–MS. Food Chem. 2009, 112, 120–124. [Google Scholar] [CrossRef]
- Janeš, D.; Kreft, S. Salicylaldehyde is a characteristic aroma component of buckwheat groats. Food Chem. 2008, 109, 293–298. [Google Scholar] [CrossRef]
- Tajima, M.; Horino, T.; Maeda, M.; Rok Son, J. Maltooligosaccharides extracted from outer-layer of rice grain. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 857–861. [Google Scholar] [CrossRef]
- Chen, H.; Siebenmorgen, T.J.; Griffin, K. Quality characteristics of long-grain rice milled in two commercial systems. Cereal Chem. 1998, 75, 560–565. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Suzuki, K.; Yasui, Y.; Kasumi, T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J. Food Compos. Anal. 2005, 18, 303–316. [Google Scholar] [CrossRef]
- Lamberts, L.; De Bie, E.; Vandeputte, G.E.; Veraverbeke, W.S.; Derycke, V.; De, M.W.; Delcour, J.A. Effect of milling on colour and nutritional properties of rice. Food Chem. 2007, 100, 1496–1503. [Google Scholar] [CrossRef]
- Hegsted, M.; Windhauser, M.M.; Morris, S.K.; Lester, S.B. Stabilized rice bran and oat bran lower cholesterol in humans. Nutr. Res. 1993, 13, 387–398. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Saunders, R.M.; Chow, F.I.; Chiu, M.C.; Bestchart, A.A. Influence of rice bran, oat bran and wheat bran on cholesterol and triglycerides in hamsters. Cereal Chem. 1990, 67, 439–443. [Google Scholar]
- Kahlon, T.S.; Chow, F.I.; Sayre, S.R.; Betschart, A.A. Cholesterol lowering in hamsters fed rice bran at various levels, defatted rice bran and rice bran oil. J. Nutr. 1992, 122, 513–519. [Google Scholar]
- Buttery, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 1988, 36, 1006–1009. [Google Scholar]
- Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh, J.G. Quantitative and sensory studies on tomato paste volatiles. J. Agric. Food Chem. 1990, 38, 336–340. [Google Scholar]
- Varlet, V.; Prost, C.; Serot, T. Volatile aldehydes in smoked fish: Analysis methods, occurence and mechanisms of formation. Food Chem. 2007, 105, 1536–1556. [Google Scholar] [CrossRef]
- Rowe, D.J. Aroma chemicals for savory flavours. Perfum. Flavor. 1998, 23, 9–14. [Google Scholar]
- Yang, D.S.; Lee, K.S.; Jeong, O.Y.; Kim, K.J.; Kays, S.J. Characterization of volatile aroma compounds in cooked black rice. J. Agric. Food Chem. 2008, 56, 235–240. [Google Scholar] [CrossRef]
- Yang, D.S.; Shewfelt, R.L.; Lee, K.S.; Kays, S.J. Comparison of odor active compounds from six distinctly different rice flavor types. J. Agric. Food Chem. 2008, 56, 2780–2787. [Google Scholar]
- Brody, J.G.; Moysich, K.B.; Humblet, O.; Attfield, K.R.; Beehler, G.P.; Rudel, R.A. Environmental pollutants and breast cancer: epidemiologic studies. Cancer 2007, 109, 2667–2711. [Google Scholar]
- McGrath, T.E.; Wooten, J.B.; Geoffrey, C.W.; Hajaligol, M.R. Formation of polycyclic aromatic hydrocarbons from tobacco: The link between low temperature residual solid and PAH formation. Food Chem. Toxicol. 2007, 45, 1039–1050. [Google Scholar] [CrossRef]
- Withycombe, D.A.; Lindsay, R.C.; Stuiber, D.A. Isolation and identification of volatile compounds from wild rice grain (Zizania aquatica). J. Agric. Food Chem. 1978, 26, 816–821. [Google Scholar]
- Grosch, W. Lipid Degradation Products and Flavors. In Food flavors. Part A. Introduction, 1st ed.; Morton, I.D., Macleod, A.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1982; pp. 325–398. [Google Scholar]
- Park, J.S.; Kim, K.Y.; Baek, H.H. Potent aroma-active compounds of cooked korean non-aromatic rice. Food Sci. Biotechnol. 2010, 19, 1403–1407. [Google Scholar] [CrossRef]
- Bredie, W.L.P.; Mottram, D.S.; Guy, R.C.E. Effect of temperature and pH on the generation of flavor volatiles in extrusion cooking of wheat flour. J. Agric. Food Chem. 2002, 50, 1118–1125. [Google Scholar] [CrossRef]
- Parker, J.K.; Hassell, G.M.E.; Mottram, D.S.; Guy, R.C.E. Sensory and instrumental analyses of volatiles generated during the extrusion cooking of oat flours. J. Agric. Food Chem. 2000, 48, 3497–3506. [Google Scholar] [CrossRef]
- Beal, A.D.; Mottram, D.S. Compounds contributing to the characteristic aroma of malted barley. J. Agric. Food Chem. 1994, 4, 2880–2884. [Google Scholar]
- Machiels, D.; Van Ruth, S.M.; Posthumus, M.A.; Istasse, L. Gas chromatography olfactometry analysis of the volatile compounds of two commercial Irish beef meats. Talanta 2003, 60, 755–764. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.L.; Ouyang, G.F.; Zhou, G.H. Changes in volatile compounds of traditional Chinese Nanjing water-boiled salted duck during processing. J. Food Sci. 2006, 71, 371–377. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC), Official Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA, 1996.
- Sample Availability: Samples of the compounds are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, J.; Tang, X.; Zhang, Y.; Zhao, W. Determination of the Volatile Composition in Brown Millet, Milled Millet and Millet Bran by Gas Chromatography/Mass Spectrometry. Molecules 2012, 17, 2271-2282. https://doi.org/10.3390/molecules17032271
Liu J, Tang X, Zhang Y, Zhao W. Determination of the Volatile Composition in Brown Millet, Milled Millet and Millet Bran by Gas Chromatography/Mass Spectrometry. Molecules. 2012; 17(3):2271-2282. https://doi.org/10.3390/molecules17032271
Chicago/Turabian StyleLiu, Jingke, Xia Tang, Yuzong Zhang, and Wei Zhao. 2012. "Determination of the Volatile Composition in Brown Millet, Milled Millet and Millet Bran by Gas Chromatography/Mass Spectrometry" Molecules 17, no. 3: 2271-2282. https://doi.org/10.3390/molecules17032271
APA StyleLiu, J., Tang, X., Zhang, Y., & Zhao, W. (2012). Determination of the Volatile Composition in Brown Millet, Milled Millet and Millet Bran by Gas Chromatography/Mass Spectrometry. Molecules, 17(3), 2271-2282. https://doi.org/10.3390/molecules17032271