Effect of Ginkgo Leaf Parenteral Solution on Blood and Cochlea Antioxidant and Immunity Indexes in OM Rats
Abstract
:1. Introduction
2. Results
Group | MDA | NO (nmol/mg protein) | ||
---|---|---|---|---|
Serum (nmol/mL) | Cochlea (nmol/mg protein) | Serum (μmol/L) | Cochlea (μmol/g tissue) | |
I | 3.85 ± 0.14 | 2.17 ± 0.11 | 127.37 ± 7.04 | 82.49 ± 7.93 |
II | 7.58 ± 0.32 ** | 8.64 ± 0.35 ** | 253.32 ± 18.61 ** | 121.33 ± 8.71 ** |
III | 5.07 ± 0.21 ## | 4.62 ± 0.19 ## | 199.54 ± 10.12 ## | 100.39 ± 9.01 ## |
IV | 4.11 ± 0.19 ## | 2.98 ± 0.14 ## | 136.14 ± 11.53 ## | 90.44 ± 7.13 ## |
V | 3.88 ± 0.42 ## | 2.31 ± 0.18 ## | 130.5 ± 12.54 ## | 84.51 ± 9.04 ## |
Group | SOD | CAT | ||
---|---|---|---|---|
Serum (U/mL) | Cochlea (U/mg protein) | Serum (U/mL) | Cochlea (U/mg protein) | |
I | 254.1 ± 12.74 | 291.3 ± 12.43 | 102.64 ± 6.42 | 53.07 ± 2.18 |
II | 121.9 ± 6.03 ** | 133.8 ± 11.21 ** | 35.49 ± 1.92 ** | 22.16 ± 1.05 ** |
III | 184.8 ± 7.29 ## | 196.4 ± 12.41 ## | 57.21 ± 2.06 ## | 34.61 ± 1.74 ## |
IV | 231.7 ± 11.05 ## | 277.5 ± 18.39 ## | 92.17 ± 3.94 ## | 49.52 ± 1.77 ## |
V | 257.1 ± 15.9 ## | 300.5 ± 23.84 ## | 118.5 ± 9.04 ## | 52.73 ± 3.04 ## |
Group | GSH-Px | GR | ||
---|---|---|---|---|
Serum (U/mL) | Cochlea (U/mg protein) | Serum (U/mL) | Cochlea (U/mg protein) | |
I | 48.82 ± 1.74 | 84.37 ± 6.09 | 21.18 ± 1.21 | 44.17 ± 1.88 |
II | 18.52 ± 1.47 ** | 20.07 ± 1.67 ** | 10.37 ± 1.01 ** | 20.14 ± 1.53 ** |
III | 32.74 ± 1.33 ## | 51.02 ± 3.83 ## | 15.66 ± 1.12 ## | 35.29 ± 1.52 ## |
IV | 46.71 ± 2.07 ## | 70.75 ± 4.81 ## | 24.18 ± 0.08 ## | 40.81 ± 1.47 ## |
V | 49.11 ± 3.21 ## | 80.53 ± 7.02 ## | 30.14 ± 1.53 ## | 45.29 ± 2.74 ## |
Group | TNF-α (ng/mL) | IL-1β (ng/L) | IL-6 (ng/L) | IL-8 (ng/L) | IL-10 (ng/L) |
---|---|---|---|---|---|
I | 2.52 ± 0.13 | 9.04 ± 0.52 | 69.52 ± 1.86 | 75.28 ± 3.11 | 6.07 ± 3.02 |
II | 6.51 ± 0.32 ** | 21.63 ± 1.04 ** | 116.3 ± 5.82 ** | 177.42 ± 7.93 ** | 26.87 ± 1.52 ** |
III | 4.83 ± 0.22 ## | 16.44 ± 0.89 ## | 89.74 ± 2.79 ## | 142.14 ± 8.83 ## | 30.51 ± 1.68 ## |
IV | 2.99 ± 0.11 ## | 11.43 ± 0.08 ## | 72.18 ± 4.16 ## | 105.62 ± 7.27 ## | 34.17 ± 1.92 ## |
V | 2.28 ± 0.09 ## | 10.27 ± 1.32 ## | 68.16 ± 3.81 ## | 84.29 ± 6.92 ## | 37.29 ± 2.51 ## |
3. Discussion
4. Experimental
4.1. Materials
4.2. Preparation of Formalin-Killed NTHI Strains
4.3. Study Design
4.4. Biochemical Analysis
4.5. Statistical Analysis
5. Conclusions
Conflict of Interest
References and Notes
- Sharma, R.C.; Crawford, D.W.; Kramsch, D.M.; Sevanian, A.; Jiao, Q. Immunolocalization of native antioxidant scavenger enzymes in early hypertensive and atherosclerotic arteries. Arterioscler. Thromb. 1992, 12, 403–415. [Google Scholar] [CrossRef]
- Winyard, P.G. Free Radical Pathways in the Inflammatory Response. In Free Radical Damage and Its Control; Rice-Evans, G., Burdon, R.H., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Ruuge, E.K.; Ledeney, A.N.; Lakomkin, V.L.; Konstantinov, A.A.; Ksenzenko, M.Y. Free radical metabolism in myocardium during ischemia and reperfusion. Am. J. Physiol. 1991, 261, 81–86. [Google Scholar]
- Rao, N.A.; Thaete, L.G.; Delmagge, J.M.; Sevanian, A. Superoxide dismutase in ocular structures. Invest. Ophthalmol. Vis. Sci 1985, 26, 1778–1781. [Google Scholar]
- Harman, D. Free radical theory of aging: role of free radicals in the origination and evolution of life, aging, and disease processes. In Free Radicals, Aging and Degenerative Diseases; Johnson, J.E., Jr., Walford, R., Harman, D., Miquel, J., Eds.; Alan R Liss: New York, NY, USA, 1986. [Google Scholar]
- Parks, R.R.; Huang, C.C.; Haddad, J., Jr. Evidence of oxygen radical injury in experimental otitis media. Laryngoscope 1994, 104, 1389–1392. [Google Scholar]
- Cross, C.E.; Halliwell, B.; Borish, E.T.; Pryor, W.A.; Ames, B.N.; Saul, R.L.; McCord, J.M.; Harman, D. Oxygen radicals and human disease. Ann. Intern. Med. 1987, 107, 526–545. [Google Scholar]
- Manson, P.N.; Anthenelli, R.M.; Im, M.J.; Bulkley, G.B.; Hoopes, J.E. The role of oxygen-free radicals in ischemic tissue injury in island skin flaps. Ann. Surg. 1983, 198, 87–90. [Google Scholar] [CrossRef]
- Parks, R.R.; Huang, C.C.; Haddad, J., Jr. Evidence of oxygen radical injury in experimental otitis media. Laryngoscope 1994, 104, 1389–1392. [Google Scholar]
- Jacobs, B.P.; Browner, W.S. Ginkgo biloba: A living fossil. Am. J. Med. 2000, 108, 341–342. [Google Scholar] [CrossRef]
- Pietri, S.; Maurelli, E.; Drieu, K.; Culcasi, M. Cardioprotective and anti-oxidant effects of the terpenoid constituents of Ginkgo biloba (EGB 761). J. Mol. Cell Cardiol. 1997, 29, 733–742. [Google Scholar] [CrossRef]
- Ferrandini, C.; Sekaki, A.; Droy-Lefaix, M.T. Oxygen-Centered Free Radicals and Their Interactions with EGb 761 or CP 202. In Advances in Ginkgo biloba Extract Research. Ginkgo biloba extract (EGb 761) as a free radical scavenger; Ferradini, C., Droy-Lefaix, M.T., Christen, Y., Eds.; Elsevier: Paris, France, 1993; Volume 2. [Google Scholar]
- Kudolo, G.B.; Dorsey, S.; Blodgett, J. Effect of ingestion of Ginkgo biloba extract on platelet aggregation and urinary prostanoid excretion in healthy and type 2 diabetic subjects. Thromb. Res. 2002, 108, 151–160. [Google Scholar] [CrossRef]
- Diamond, B.J.; Shiflett, S.C.; Feiwel, N.; Matheis, R.J.; Noskin, O.; Richard, J.A.; Schoenberger, N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000, 81, 668–678. [Google Scholar]
- Braquet, P.; Koltai, M. Vasculoprotective Effect of the Platelet-Activating Factor Antagonist Ginkgolide B isolated from Ginkgo biloba Leaves. In Advances in Ginkgo biloba Extract Research. Cardiovascular Effect of Ginkgo biloba Extract (EGb 761); Clostre, F., De Feudis, F.V., Eds.; Elsevier: Paris, France, 1994; Volume 3. [Google Scholar]
- Chung, K.F.; McCuster, M.; Page, C.P.; Dent, G.; Guinot, P.H.; Barnes, P.J. Effect of a ginkgolide mixture (BN 52063) in antagonizing skin and platelet responses to platelet activating factor in man. Lancet 1987, 31, 248–251. [Google Scholar]
- White, H.L.; Scates, P.W.; Cooper, B.R. Extracts of Ginkgo biloba leaves inhibit monoamine oxidase. Life Sci. 1996, 58, 1315–1321. [Google Scholar] [CrossRef]
- Ramassamy, C.; Christen, Y.; Clostre, F.; Costentin, J. The Ginkgo biloba extract EGb 761, increases synaptosomal uptake of 5-hydroxy tryptamine: In vitro and ex vivo studies. J. Pharm. Pharmacol. 1992, 44, 943–945. [Google Scholar]
- John, E.O.; Russell, P.T.; Nam, B.; Jinn, T.H.; Jung, T.T. Concentration of nitric oxide metabolites in middle ear effusion. Int. J. Pediatr. Otorhinolaryngol. 2001, 60, 55–58. [Google Scholar] [CrossRef]
- Parks, R.R.; Huang, C.C.; Haddad, J., Jr. Evidence of oxygen radical injury in experimental otitis media. Laryngoscope 1994, 104, 1389–1392. [Google Scholar]
- Mattsson, C.; Magnuson, K.; Hellstrom, S. Myringosclerosis caused by increased oxygen concentration in traumatized tympanic membranes: Experimental study. Ann. Otol. Rhinol. Laryngol. 1995, 104, 625–632. [Google Scholar]
- Friedman, A.D.; Shah, J.B.; Takoudes, T.G.; Haddad, J., Jr. The role of free radicals in chronic rhinosinusitis. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 1055–1057. [Google Scholar]
- Rathore, N.; Kale, M.; John, S.; Bhatnagar, D. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat erythrocytes. Indian J. Physiol. Pharmacol. 2000, 44, 161–166. [Google Scholar]
- Thompson, K.H.; Godin, D.V. Micronutrients and antioxidants in the pathogenesis of diabetes. Nutr. Res. 1995, 5, 1377–1410. [Google Scholar] [CrossRef]
- Takoudes, T.G.; Haddad, J.J. Free radical production by antibiotic-killed bacteria in the guinea pig middle ear. Laryngoscope 2001, 111, 283–289. [Google Scholar] [CrossRef]
- Takoudes, T.G.; Haddad, J.J. Lipid peroxides in middle ear fluid after acute otitis media in guinea pigs. Ann. Otol. Rhinol. Laryngol. 1999, 108, 564–568. [Google Scholar]
- Haddad, J.J. Lipoperoxidation as a measure of free radical injury in otitis media. Laryngoscope 1998, 108, 524–530. [Google Scholar] [CrossRef]
- Parks, R.R.; Huang, C.C.; Haddad, J.J. Evidence of oxygen radical injury in experimental otitis media. Laryngoscope 1994, 104, 1389–1392. [Google Scholar]
- Doner, F.; Delibas, N.; Dogru, H.; Yariktas, M.; Demirci, M. The role of free oxygen radicals in experimental otitis media. J. Basic Clin. Physiol. Pharmacol. 2002, 13, 33–40. [Google Scholar]
- Garcia Callejo, F.J.; Estors Ferrero, J.; Morant Ventura, A.; Segarra Cortes, P.; Velert Vila, M.M. Lipoperoxidation in otorrhea of the middle ear as a marker of infection. Clinical application. Acta Otorrinolaringol. Esp. 2000, 51, 478–481. [Google Scholar]
- Kaygusuz, I.; Ilhan, N.; Karlidag, T.; Keles, E.; Yalcin, S.; Cetiner, H. Free radicals and scavenging enzymes in chronic tonsillitis. Otolaryngol. Head Neck Surg. 2003, 129, 265–268. [Google Scholar] [CrossRef]
- Shukla, G.K.; Garg, A.; Bhatia, N.; Pandey, S.; Kaur, G.; Shukla, R.N.; Shanker, K. Significance of free radicals in chronic tonsillitis. Boll. Chim. Farm. 2000, 139, 103–105. [Google Scholar]
- Wang, W.; Yan, X.; Han, L. The clinical meaning and determination of the superoxid dismutase activity and malondialehyde content in the serum of the patients suffering from chronic tonsillitis. Lin Chuang Er Bi Yan Hou Ke Za Zhi 1998, 12, 156–157. [Google Scholar]
- Shukla, G.K.; Mahajan, A.; Pandey, S.; Gujrati, V.R.; Vrat, S.; Mishra, S.C.; Shanker, K. A study of free radicals and scavenging enzyme in tonsillitis. Boll. Chim. Farm. 1996, 135, 653–655. [Google Scholar]
- Lowenstein, C.J.; Dinerman, J.L.; Snyder, S.H. Nitric oxide: A physiologic messenger. Ann. Intern. Med. 1994, 120, 227–237. [Google Scholar]
- Forseni, M.; Bagger-Sjoback, D.; Hultcrantz, M. A study of inflammatory mediators in the human tympanosclerotic middle ear. Arch. Otolaryngol. Head Neck Surg. 2001, 127, 559–564. [Google Scholar]
- Bazzoni, F.; Beutler, B. The tumor necrosis factor ligand and receptor families. N. Engl. J. Med. 1996, 334, 1717–1725. [Google Scholar] [CrossRef]
- DeMaria, T.F.; Murwin, D.M. Tumor necrosis factor during experimental lipopolysaccharide-induced otitis media. Laryngoscope 1997, 107, 369–372. [Google Scholar] [CrossRef]
- Hotomi, M.; Samukawa, T.; Yamanaka, N. Interleukin-8 in otitis media with effusion. Acta Otolaryngol. (Stockh) 1994, 114, 406–409. [Google Scholar] [CrossRef]
- Johnson, I.J.M.; Brooks, T.; Hutton, D.A.; Birchall, J.P.; Pearson, J.P. Compositional differences between bilateral middle ear effusions in otitis media with effusion: Evidence for a different etiology? Laryngoscope 1997, 107, 684–689. [Google Scholar] [CrossRef]
- Johnson, M.D.; Fitzgerald, J.E.; Leonard, G.; Burleson, J.A.; Kreutzer, D.L. Cytokines in experimental otitis media with effusion. Laryngoscope 1994, 104, 191–196. [Google Scholar]
- Maxwell, K.; Leonard, G.; Kreutzer, D.L. Cytokine expression in otitis media with effusion. Tumor necrosis factor soluble receptor. Arch Otolaryngol. Head Neck Surg. 1997, 123, 984–988. [Google Scholar] [CrossRef]
- Yellon, R.; Leonard, G.; Marucha, P.; Craven, R.; Carpenter, R.J.; Lehmann, W.B.; Burleson, J.A.; Kreutzer, D.L. Characterization of cytokines present in middle ear effusion. Laryngoscope 1991, 101, 165–169. [Google Scholar]
- Yellon, R.F.; Leonard, G.; Marucha, P.; Sidman, J.; Camperter, R.; Burleson, J.; Carlson, J.; Kreutzer, D. Demonstration of interleukin 6 in middle ear effusion. Arch. Otolaryngol. Head Neck Surg. 1992, 118, 745–748. [Google Scholar] [CrossRef]
- Eskdale, J.; Kube, D.; Tesch, H.; Gallagher, G. Mapping of the human IL10 gene and further characterization of the 5' flanking sequence. Immunogenetics 1997, 46, 120–128. [Google Scholar] [CrossRef]
- Shomyseh, S.; Zenewicz, L.A.; Kamanaka, M.; Flavell, R.A. Anti-inflammatory and pro-inflammatory roles of TGF-β, IL-10, and IL-22 in immunity and autoimmunity. Curr. Opin. Pharmacol. 2009, 9, 447–453. [Google Scholar] [CrossRef]
- Okazaki, N.; DeMaria, T.F.; Briggs, B.R.; Lim, D.J. Experimental otitis media induced by formalin-killed H. influenzae: Cytological and histological study. Am. J. Otolaryngol. 1984, 5, 80–92. [Google Scholar] [CrossRef]
- Tong, H.H.; Chen, Y.; James, M.A.; Van Deusen, J.; Welling, D.B.; DeMaria, T.F. Expression of cytokine and chemokine genes by human middle ear epithelial cells induced by formalin-killed H. influenzae or its LOS htrB and rfaD mutants. Infect. Immun. 2001, 69, 3678–3684. [Google Scholar] [CrossRef]
- Long, J.P.; Tong, H.H.; Shannon, P.A.; DeMaria, T.F. Differential expression of cytokine genes and inducible nitric oxide synthase induced by opacity phenotype variants of Streptococcus pneumoniae during acute otitis media in the rat. Infect. Immun. 2003, 71, 5531–5540. [Google Scholar] [CrossRef]
- Tong, H.H.; Chen, Y.P.; Liu, X.; DeMaria, T.F. Differential expression of cytokine genes and iNOS induced by nonviable nontypeable Haemophilus influenzae or its LOS mutants during acute otitis media in the rat. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 1183–1191. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Aebi, H.E. Catalase in vitro. Methods Enzymol. 1984, 105, 121. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrouch, N.J.; Farr, A.L.; Ran Dall, R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, 153, 267. [Google Scholar]
- Buege, J.A.; Aust, S. Microsomal lipid peroxidation. Methods Enzymol. 1978, 51, 302. [Google Scholar] [CrossRef]
- Lawrence, R.A.; Burk, R.F. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 1976, 71, 952–958. [Google Scholar] [CrossRef]
- Mantha, S.V.; Prasad, M.; Kalra, J.; Prasad, K. Antioxidant enzymes in hypercholesterolemia and effects of Vitamin E in rabbits. Atherosclerosis 1993, 101, 135–144. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardwill, C.J.; David, M.M. Determination of serum proteins by means of biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar]
- Goldberg, D.M.; Spooner, R.J. Glutathione Reductase. In Methods in Enzymology; Bergmeyer, H.U., Ed.; Verlag Chemie: Basel, Switzerland, 1983; Volume 3, pp. 258–265. [Google Scholar]
- Sample Availability: Samples of the Ginkgo leaf parenteral solution are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhao, J.; Su, Y.; Chen, A.; Yuan, H.; Liu, L.; Wu, W. Effect of Ginkgo Leaf Parenteral Solution on Blood and Cochlea Antioxidant and Immunity Indexes in OM Rats. Molecules 2011, 16, 10433-10442. https://doi.org/10.3390/molecules161210433
Zhao J, Su Y, Chen A, Yuan H, Liu L, Wu W. Effect of Ginkgo Leaf Parenteral Solution on Blood and Cochlea Antioxidant and Immunity Indexes in OM Rats. Molecules. 2011; 16(12):10433-10442. https://doi.org/10.3390/molecules161210433
Chicago/Turabian StyleZhao, Jiandong, Yu Su, Aiting Chen, Hu Yuan, Liangfa Liu, and Wenming Wu. 2011. "Effect of Ginkgo Leaf Parenteral Solution on Blood and Cochlea Antioxidant and Immunity Indexes in OM Rats" Molecules 16, no. 12: 10433-10442. https://doi.org/10.3390/molecules161210433
APA StyleZhao, J., Su, Y., Chen, A., Yuan, H., Liu, L., & Wu, W. (2011). Effect of Ginkgo Leaf Parenteral Solution on Blood and Cochlea Antioxidant and Immunity Indexes in OM Rats. Molecules, 16(12), 10433-10442. https://doi.org/10.3390/molecules161210433