Tomato Polyphenol Oxidase B Is Spatially and Temporally Regulated during Development and in Response to Ethylene
Abstract
:1. Introduction
2. Results and Disscussion
2.1. Analysis of PPO B promoter
2.1.1. Phenylpropanoid biosynthesis
2.1.2. Signal transduction pathways and responsiveness to hormones and stresses
2.1.3. Fruit and seed proteins/enzymes
2.1.4. Photosynthesis
2.2. Spatial and temporal expression conferred by the PPO B promoter
2.2.1. PPO B expression patterns in leaves
2.2.2. PPO B expression patterns in stems
2.2.3. PPO B expression patterns in roots
2.2.4. PPO B expression patterns in flowers
2.2.5. PPO B expression patterns in fruits
2.2.6. Abnormal PPO B expression patterns
2.3. Ethylene Induction of PPO B Promoter
2.4. Discussion
2.4.1. Spatial and temporal expression of PPO B under normal growth and differentiation
2.4.2. Responsiveness of PPO B to ethylene
2.4.3. Comparison of PPO B promoter activities and PPO B transcript accumulation
2.4.4. Putative roles of PPO B
3. Experimental
3.1. Sequencing and comparative analysis of PPO B promoter sequence
3.2. PPO B promoter:GUS fusion constructs
3.3. Tomato transformation
3.4. Plant materials
3.5. Histochemical localization of β-Glucuronidase activity
3.6. Ethylene induction of PPO B expression
3.7. Protein isolation and fluorometric GUS assay
4. Conclusions
Acknowledgments
References and Notes
- Steffens, J.C.; Harel, E.; Hunt, M.D. Polyphenol oxidase. In Genetic Engineering of Plant Secondary Metabolism; Ellis, B.E., Kuroki, G.W., Stafford, H.A., Eds.; Plenum Press: New York, NY, USA, 1994; pp. 275–312. [Google Scholar]
- Mayer, A.M.; Harel, E. Phenoloxidases and their significance in fruit and vegetables. In Food Enzymology; Fox, P.F., Ed.; Elsevier Science Publishers: New York, NY, USA, 1991; pp. 373–398. [Google Scholar]
- Mayer, A.M. Polyphenol oxidases in plants-recent progress. Phytochemistry 1987, 26, 11–20. [Google Scholar] [CrossRef]
- Mayer, A.M.; Harel, E. Polyphenol oxidases in plants. Phytochemistry 1979, 18, 193–215. [Google Scholar] [CrossRef]
- Thipyapong, P.; Stout, M.J.; Attajarusit, J. Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 2007, 12, 1569–1595. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Steffens, J.C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 2002, 2, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Thipyapong, P.; Hunt, M.D.; Steffens, J.C. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 2004, 220, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Constabel, C.P. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 2004, 220, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Mahanil, S.; Attajarusit, J.; Stout, M. J.; Thipyapong, P. Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Sci. 2008, 174, 456–466. [Google Scholar] [CrossRef]
- Bhonwong, A.; Stout, M.J.; Attajarusit, J.; Tantasawat, P. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J. Chem. Ecol. 2009, 35, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Shahar, T.; Hennig, N.; Gutfinger, T.; Hareven, D.; Lifschitz, E. The tomato 66.3-kD polyphenoloxidase gene: Molecular identification and developmental expression. Plant Cell 1992, 4, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.D.; Eannetta, N.T.; Yu, H.; Newman, S.M.; Steffens, J.C. cDNA cloning and expression of potato polyphenol oxidase. Plant Mol. Biol. 1993, 21, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, P.W.; Dry, I.B.; Robinson, S.P. Polyphenol oxidase in potato. Plant Physiol. 1995, 109, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Thipyapong, P.; Joel, D.M.; Steffens, J.C. Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol. 1997, 113, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.; Thoma, S.; Samac, D.; Hatfield, R. Cloning of red clover and alfafa polyphenol oxidase genes and expression of active enzymes in transgenic alfafa. In Molecular Breeding of Forage and Turf; Hopkins, A., Wang, Z.Y., Mian, R., Sledge, M., Barker, R.E., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2004; pp. 189–195. [Google Scholar]
- Thipyapong, P.; Hunt, M.D.; Steffens, J.C. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 1995, 40, 673–676. [Google Scholar] [CrossRef]
- Constabel, C.P.; Bergey, D.R.; Ryan, C.A. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. USA 1995, 92, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Thipyapong, P.; Steffens, J.C. Tomato polyphenol oxidase: Differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiol. 1997, 115, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Thipyapong, P.; Melkonian, J.; Wolfe, D.W.; Steffens, J.C. Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci. 2004, 167, 693–703. [Google Scholar] [CrossRef]
- Newman, S.M.; Eannetta, N.T.; Yu, H.; Prince, J.P.; de Vicente, M.C.; Tanksley, S.D.; Steffens, J.C. Organization of the tomato polyphenol oxidase gene family. Plant Mol. Biol. 1993, 21, 1035–1051. [Google Scholar] [CrossRef] [PubMed]
- Dyer, W.E.; Henstrand, J.M.; Handa, A.K.; Herrmann, K.M. Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc. Natl. Acad. Sci. USA 1989, 86, 7370–7373. [Google Scholar] [CrossRef] [PubMed]
- Weisshaar, B.; Jenkins, G.I. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1998, 1, 251–257. [Google Scholar] [CrossRef]
- Sommer, H.; Saedler, H. Structure of the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet. 1986, 202, 429–434. [Google Scholar] [CrossRef]
- Douglas, C.J. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci. 1996, 1, 171–178. [Google Scholar] [CrossRef]
- Minami, E.; Ozeki, Y.; Matsuoka, M.; Koizuka, N.; Tanaka, Y. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur. J. Biochem. 1989, 185, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Akada, S.; Kung, S.D.; Dube, S.K. Nucleotide sequence of one member of soybean chalcone synthase multi-gene family. Nucl. Acid. Res. 1990, 18, 3398. [Google Scholar] [CrossRef]
- Bloksberg, L.N. Studies on the Biology of Phenylalanine ammonia lyase and Pathogen Interaction. PhD Thesis, University of California, 1991. [Google Scholar]
- Kawai, S.; Mori, A.; Shiokawa, T.; Kajita, S.; Katayama, Y.; Morohoshi, N. Isolation and analysis of cinnamic acid 4-hydroxylase homologous genes from a hybrid aspen, Populus kitakamiensis. Biosci. Biotechnol. Biochem. 1996, 60, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, E.; Van Doorsselaere, J.; Boerjan, W.; Boudet, A.M.; Grima-Pettenati, J. Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation. Plant J. 2000, 23, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Douglas, C.; Hoffman, H.; Schulz, W.; Hahlbrock, K. Structure and elicitor or u.v.-light stimulated expression of two 4-coumarate:CoA ligase genes in parsley. EMBO J. 1987, 6, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Sablowski, R.W.; Moyano, E.; Culianez-Macia, F.A.; Schuch, W.; Martin, C.; Bevan, M. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 1994, 13, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Logemann, E.; Parniske, M.; Hahlbrock, K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc. Natl. Acad. Sci. USA 1995, 92, 5905–5909. [Google Scholar] [CrossRef] [PubMed]
- Patzlaff, A.; Newman, L.J.; Dubos, C.; Whetten, R.W.; Smith, C.; McInnis, S.; Bevan, M.W.; Sederoff, R.R.; Cambell, M.M. Characterization of Pt MYB1, an R2R3-MYB from pine xylem. Plant Mol. Biol. 2003, 53, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Whittier, R.F.; Dean, D.A.; Rogers, J.C. Nucleotide sequence analysis of alpha-amylase and thiol protease genes that are hormonally regulated in barley aleurone cells. Nucl. Acid. Res. 1987, 15, 2515–2535. [Google Scholar] [CrossRef]
- Deikman, J.; Fischer, R.L. Interaction of a DNA binding factor with the 5’-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J. 1988, 7, 3315–3320. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.L.; Parks, J.E.; Rottmann, W.H.; Theologis, A. Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar but differentially regulated. Proc. Natl. Acad. Sci. USA 1991, 88, 7021–7025. [Google Scholar] [CrossRef] [PubMed]
- Rottmann, W.H.; Peter, G.F.; Oeller, P.W.; Keller, J.A.; Shen, N.F.; Nagy, B.P.; Taylor, L.P.; Campbell, A.D.; Theologis, A. 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescense. J. Mol. Biol. 1991, 222, 937–961. [Google Scholar] [CrossRef]
- Cordes, S.; Deikman, J.; Margossian, L.J.; Fischer, R.L. Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato. Plant Cell 1989, 1, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Cercós, M.; Gómez-Cadenas, A.; Ho, T.H. Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J. 1999, 19, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Boter, M.; Ruíz-Rivero, O.; Abdeen, A.; Prat, S. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Gene. Develop. 2004, 18, 1577–1591. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.N.; Shih, M.-C.; Li, N. The gus reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J. Exp. Bot. 2005, 56, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Sutoh, K.; Yamauchi, D. Two cis-acting elements necessary and sufficient for giberellin-upregulated proteinase expression in rice seeds. Plant J. 2003, 34, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry and Molecular Biology of Plants; American Society of Plant Physiologists: Rockville, MD, USA, 2000. [Google Scholar]
- Baker, S.S.; Wilhelm, K.S.; Thomashow, M.F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 1994, 24, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Rawat, R.; Xu, Z.F.; Yao, K.M.; Chye, M.L. Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Mol. Biol. 2005, 57, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; O’Hare, T.J.; Jobin-Décor, M.; Underhill, S.J.R.; Wills, R.B.H.; Graham, M.W. Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnol. J. 2003, 1, 463–478. [Google Scholar] [PubMed]
- Xue, G.P. Characterization of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucl. Acid. Res. 2002, 30, e77. [Google Scholar] [CrossRef]
- Simpson, S.D.; Nakashima, K.; Narusaka, Y.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 2003, 33, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Park, H.C.; Kim, M.L.; Kang, Y.H.; Jeon, J.M.; Yoo, J.H.; Kim, M.C.; Park, C.Y.; Jeong, J.C.; Moon, B.C.; Lee, J.H.; Yoon, H.W.; Lee, S.H.; Chung, W.S.; Lim, C.O.; Lee, S.Y.; Hong, J.C.; Cho, M.J. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 2004, 135, 2150–2161. [Google Scholar] [CrossRef] [PubMed]
- Rickey, T.M.; Belknap, W.R. Comparison of the expression of several stress-responsive genes in potato tubers. Plant Mol. Biol. 1991, 16, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Nagao, R.T.; Czarnecka, E.; Gurley, W.B.; Schoeffl, F.; Key, J.L. Genes for low-molecular-weight heat shock proteins of soybeans: sequence analysis of a multigene family. Mol. Cell Biol. 1985, 5, 3417–3428. [Google Scholar] [CrossRef] [PubMed]
- Rosahl, S.; Schmidt, R.; Schell, J.; Willmitzer, L. Isolation and characterization of a gene from Solanum tuberosum encoding patatin, the major storage protein of potato tubers. Mol. Gen. Genet. 1986, 203, 214–220. [Google Scholar] [CrossRef]
- Ye, X.S.; Pan, S.Q.; Kuc, J. Association of pathogenesis-related proteins and activities of peroxidase, β-1,3-glucanase and chitinase with systemic induced resistance to blue mould of tobacco but not to systemic tobacco mosaic virus. Physiol. Mol. Plant Pathol. 1990, 36, 523–531. [Google Scholar] [CrossRef]
- Litts, J.C.; Simmons, C.R.; Karrer, E.E.; Huang, N.; Rodriguez, R.L. The isolation and characterization of a barley 1,3-1,4-beta-glucanase gene. Eur. J. Biochem. 1990, 194, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Sperisen, C.; Ryals, J.; Meins, F. Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco glucan endo-1,3-beta-glucosidase gene family. Proc. Natl. Acad. Sci. USA 1991, 88, 1820–1824. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, J.W.; Kleinow, T.; Engelhardt, K.; Philipp, C.; Wegener, D.; Schell, J.; Schreier, P.H. Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. Plant Mol. Biol. 1996, 30, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Park, J.S. Nucleotide sequence of a potato proteinase inhibitor I gene. Singmul Hakhoe Chi. 1989, 32, 69–78. [Google Scholar]
- Fujiyama, K.; Takemura, H.; Shinmyo, A.; Okada, H.; Takano, M. Genomic DNA structure of two new horseradish-peroxidase-encoding genes. Gene 1990, 89, 163–169. [Google Scholar] [CrossRef]
- Pozueta-Romero, J.; Klein, M.; Houlne, G.; Schantz, M.L.; Meyer, B.; Schantz, R. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. Plant Mol. Biol. 1995, 28, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.A.; Liao, Y.C.; Alborzi, A.; Beiderman, B.; Chang, F.H.; Masters, S.B.; Levinson, A.D.; Bourne, H.R. Inhibitory and stimulatory G proteins of adenylate cyclase: cDNA and amino acid sequences of the α chains. Proc. Natl. Acad. Sci. USA 1986, 83, 6687–6691. [Google Scholar] [CrossRef] [PubMed]
- Bolwell, G.P. Cyclic AMP, the reluctant messenger in plants. Trends Biochem. Sci. 1995, 20, 492–495. [Google Scholar] [CrossRef]
- Podgorski, G.J.; Franke, J.; Faure, M.; Kessin, R.H. The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol. Cell Biol. 1989, 9, 3938–3950. [Google Scholar] [CrossRef]
- Robbins, S.M.; Williams, J.G.; Spiegelman, G.B.; Weeks, G. Cloning and characterization of the Dictyostelium discoideum rasG genomic sequences. Biochim. Biophys. Acta 1992, 1130, 85–89. [Google Scholar] [CrossRef]
- Siemeister, G.; Buchholz, C.; Hachtel, W. Genes for the plastid elongation factor Tu and ribosomal protein S7 and six tRNA genes on the 73 kb DNA from Astasia longa that resembles the chloroplast DNA of Euglena. Mol. Gen. Genet. 1990, 220, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Takemasa, T.; Takagi, T.; Kobayashi, T.; Konishi, K.; Watanabe, Y. The third calmodulin family protein in Tetrahymena. J. Biol. Chem. 1990, 265, 2514–2517. [Google Scholar] [PubMed]
- Robbins, S.M.; Suttorp, V.V.; Weeks, G.; Spiegelman, G.B. A ras-related gene from the lower eukaryote Dictyostelium that is highly conserved relative to the human rap genes. Nucl. Acid. Res. 1990, 18, 5265–5269. [Google Scholar] [CrossRef]
- Louis, J.M.; Saxe, C.L., III; Kimmel, A.R. Two transmembrane signaling mechanisms control expression of the cAMP receptor gene CAR1 during Dictyostelium development. Proc. Natl. Acad. Sci. USA 1993, 90, 5969–5973. [Google Scholar] [CrossRef] [PubMed]
- Insall, R.; Kuspa, A.; Lilly, P.J.; Shaulsky, G.; Levin, L.R.; Loomis, W.; Devreotes, P. CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G Protein-mediated activation of adenylyl cyclase in Dictyostelium. J. Cell Biol. 1994, 126, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.; Davydov, O.; Knight, H.; Galon, Y.; Knight, M.R.; Fluhr, R.; Fromm, H. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis-elements in Arabidopsis. Plant Cell 2006, 18, 2733–2748. [Google Scholar] [CrossRef] [PubMed]
- Brewin, N.J. Development of the legume root nodule. Ann. Rev. Cell Biol. 1991, 7, 191–226. [Google Scholar] [CrossRef] [PubMed]
- Sandal, N.N.; Bojsen, K.; Marcker, K.A. A small family of nodule specific genes from soybean. Nucl. Acid. Res. 1987, 15, 1507–1519. [Google Scholar] [CrossRef]
- Metz, B.A.; Welters, P.; Hoffmann, H.J.; Jensen, E.O.; Schell, J.; Bruijn, F.J. Primary structure and promoter analysis of leghemoglobin genes of the stem-nodulated tropical legume Sesbania rostrata: conserved coding sequences, cis-elements and trans-acting factors. Mol. Gen. Genet. 1988, 214, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Vaucheret, H.; Kronenberger, J.; Rouze, P.; Caboche, M. Complete nucleotide sequence of the two homeologous tobacco nitrate reductase genes. Plant Mol. Biol. 1989, 12, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Schnorr, K.M.; Juricek, M.; Huang, C.X.; Culley, D.; Kleinhofs, A. Analysis of barley nitrate reductase cDNA and genomic clones. Mol. Gen. Genet. 1991, 227, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, J.J.; DellaPenna, D.; Bennett, A.B.; Fischer, R.L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1989, 1, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, E.S.; Paul, W.; Craze, M.; Whitelaw, C.A.; Weigand, A.; Roberts, J.A. Dehiscence-related expression of an Arabidopsis thaliana gene encoding a polygalacturonase in transgenic plants of Brassica napus. Plant Cell Environ. 1999, 22, 159–167. [Google Scholar] [CrossRef]
- González-Carranza, Z.H.; Whitelaw, C.A.; Swarup, R.; Roberts, J.A. Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis. Plant Physiol. 2002, 128, 534–543. [Google Scholar] [CrossRef] [PubMed]
- González-Carranza, Z.H.; Elliott, K.A.; Roberts, J.A. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J. Exp. Bot. 2007, 58, 3719–3730. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.E.; Houck, C.M.; Monson, E.K.; DeJesus, C.E.; Sheehy, R.E.; Hiatt, W.R. The nucleotide sequence of the 5’ flanking region of a tomato polygalacturonase gene. Nucl. Acid. Res. 1988, 16, 711. [Google Scholar] [CrossRef]
- Montgomery, J.; Pollard, V.; Deikman, J.; Fischer, R.L. Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp. Plant Cell 1993, 5, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-B.; Sexton, R.; Tucker, M.L. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol. 2000, 123, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Kloesgen, R.B.; Gierl, A.; Schwarz-Sommer, Z.S.; Saedler, H. Molecular analysis of the waxy locus of Zea mays. Mol. Gen. Genet. 1986, 203, 237–244. [Google Scholar] [CrossRef]
- Anderson, J.M.; Larsen, R.; Laudencia, D.; Kim, W.T.; Morrow, D.; Okita, T.W.; Preiss, J. Molecular characterization of the gene encoding a rice endosperm-specific ADPglucose pyrophosphorylase subunit and its developmental pattern of transcription. Gene 1991, 97, 199–205. [Google Scholar] [CrossRef]
- Allen, R.D.; Bernier, F.; Lessard, P.A.; Beachy, R.N. Nuclear factors interact with a soybean beta-conglycinin enhancer. Plant Cell 1989, 1, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Washida, H.; Onodera, Y.; Harada, K.; Takaiwa, F. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J. 2000, 23, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Ellerström, M.; Stålberg, K.; Ezcurra, I.; Rask, L. Functional dissection of a napin gene promoter: Identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol. Biol. 1996, 32, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Beers, E.P.; Han, K.H. Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol. Genet. Genomics 2006, 276, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Osakabe, K.; Chiang, V.L. Characterization of the tissue-specific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine (Pinus taeda) in Nicotiana tabacum. Plant Cell Rep. 2009, 28, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Fluhr, R.; Moses, P.; Morelli, G.; Coruzzi, G.; Chua, N.H. Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J. 1986, 5, 2063–2071. [Google Scholar] [CrossRef] [PubMed]
- Dunn, P.P.J.; Gray, J.C. Localization and nucleotide sequence of the gene for the 8 kDa subunit of photosystem I in pea and wheat chloroplast DNA. Plant Mol. Biol. 1988, 11, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.E.; Ray, J.A.; Schuch, W. Isolation of a gene from maize encoding a chlorophyll a/b-binding protein. Plant Mol. Biol. 1992, 19, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.; Yamamoto, N.; Sasaki, S. Structure of the pine (Pinus thunbergii) chlorophyll a/b-binding protein gene expressed in the absence of light. Plant Mol. Biol. 1992, 19, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Scheller, H.V.; Naver, H.; MØller, B.L. Molecular aspects of photosystem I. Physiol. Planta 1997, 100, 842–851. [Google Scholar] [CrossRef]
- Donald, R.G.K.; Cashmore, A.R. Mutation of either G box or I box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter. EMBO J. 1990, 9, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Bate, N.; Twell, D. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 1998, 37, 859–869. [Google Scholar] [CrossRef]
- Yamagata, H.; Yonesu, K.; Hirata, A.; Aizono, Y. TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J. Biol. Chem. 2002, 277, 11582–11590. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-X. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci. 1999, 4, 210–214. [Google Scholar] [CrossRef]
- Hahlbrock, K.; Scheel, D. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. 1989, 40, 347–369. [Google Scholar] [CrossRef]
- Fahn, A. Plant Anatomy, 3rd ed.; A. Wheaton and Co. Ltd.: Exeter, UK, 1982. [Google Scholar]
- Mittler, R.; Lam, E. In situ detection of nDNA fragmentation during the differentiation of tracheary elements in higher plants. Plant Physiol. 1995, 108, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Bestwick, C.S.; Bennett, M.H.; Mansfield, J.W. Hrp mutant of Pseudomonas syringae pv phaseolicola induces cell wall alterations but not membrane damage leading to the hypersensitive reaction in lettuce. Plant Physiol. 1995, 108, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.T.; Guo, A.; Klessig, D.F.; Ausubel, F.M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 1994, 77, 551–562. [Google Scholar] [CrossRef]
- Jones, J.D.G. Paranoid plants have their genes examined. Curr. Biol. 1994, 4, 749–751. [Google Scholar] [CrossRef]
- Martin, S.J.; Green, D.R.; Cotter, T.G. Dicing with death: dissecting the components of the apoptosis machinery. Trends Biol. Sci. 1994, 19, 26–30. [Google Scholar] [CrossRef]
- Pesis, E.; Ackerman, M.; Ben-Arie, R.; Feygenberg, O.; Feng, X.; Apelbaum, A.; Goren, R.; Prusky, D. Ethylene involvement in chilling injury symptoms of avocado during cold storage. Postharvest Biol. Technol. 2002, 24, 171–181. [Google Scholar] [CrossRef]
- Pegg, G.F. The response of ethylene-treated tomato plants to infection by Verticillium albo-atrum. Physiol. Plant Pathol. 1976, 9, 215–218. [Google Scholar] [CrossRef]
- Showalter, A.M.; Butt, A.D.; Kim, S. Molecular details of tomato extensin and glycine-rich protein gene expression. Plant Mol. Biol. 1992, 19, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Vera, P.; Conejero, V. The induction and accumulation of the pathogenesis-related P69 proteinase in tomato during Citrus exocortis viroid infection and in response to chemical treatments. Physiol. Mol. Plant Pathnol. 1989, 34, 323–334. [Google Scholar] [CrossRef]
- Hagemann, P. Histochemische muster beim blattfall. Ber. Schweiz. Botan. Ges. 1971, 81, 97–138. [Google Scholar]
- Bethke, P.C.; Lonsdale, J.E.; Fath, A.; Jones, R.L. Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 1999, 11, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1982. [Google Scholar]
- Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.V. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Hoekema, A.; Hirsch, P.R.; Hooykaas, P.J.J.; Schilperoot, R.A. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 1983, 303, 179–181. [Google Scholar] [CrossRef]
- Frary, A.; Earle, E. An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 1996, 16, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Gillaspy, G.; Ben-David, H.; Gruissem, W. Fruits: A developmental perspective. Plant Cell 1993, 5, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- McCabe, D.E.; Swain, W.F.; Martinell, B.J.; Christou, P. Stable transformation of soybean (Glycine max) by particle acceleration. Nat. Biotechnol. 1988, 6, 923–926. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Newman, S.M.; Tantasawat, P.; Steffens, J.C. Tomato Polyphenol Oxidase B Is Spatially and Temporally Regulated during Development and in Response to Ethylene. Molecules 2011, 16, 493-517. https://doi.org/10.3390/molecules16010493
Newman SM, Tantasawat P, Steffens JC. Tomato Polyphenol Oxidase B Is Spatially and Temporally Regulated during Development and in Response to Ethylene. Molecules. 2011; 16(1):493-517. https://doi.org/10.3390/molecules16010493
Chicago/Turabian StyleNewman, Sally M., Piyada Tantasawat, and John C. Steffens. 2011. "Tomato Polyphenol Oxidase B Is Spatially and Temporally Regulated during Development and in Response to Ethylene" Molecules 16, no. 1: 493-517. https://doi.org/10.3390/molecules16010493
APA StyleNewman, S. M., Tantasawat, P., & Steffens, J. C. (2011). Tomato Polyphenol Oxidase B Is Spatially and Temporally Regulated during Development and in Response to Ethylene. Molecules, 16(1), 493-517. https://doi.org/10.3390/molecules16010493