Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics
Abstract
:Introduction
Results and Discussion
Conclusions
Experimental
Plant material and preparation of fruit extract
Antimicrobial activity
Statistical analysis
Acknowledgments
References
- Ozgen, M.; Durgac, C.; Serce, S.; Kaya, C. Chemical and antioxidant properties of pomegranate cultivars grown in mediterranean region of Turkey. Food Chem. 2008, 111, 703–706. [Google Scholar] [CrossRef]
- Gracious, R.R.; Selvasubramanian, S.; Jayasundar, S. Immunomodulatory activity of Punica granatum in rabbits: a preliminary study. J. Ethnopharmacol. 2001, 78, 85–87. [Google Scholar] [CrossRef]
- Kim, N.D.; Mehta, R.; Yu, W.; Neman, I.; Livney, T.; Amichay, A.; Poirer, D.; Nicholls, P.; Kirby, A.; Jiang, W.; Mansel, R.; Ramachandran, C.; Rabi, T.; Kaplan, B.; Lansky, E. Chemopreventive and adjuvant tharapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res. Tr. 2002, 71, 203–217. [Google Scholar] [CrossRef]
- Murthy, K.N.; Reddy, V.K.; Veigas, J.M.; Murthy, U.D. Study on wound healing activity of Punica granatum peel. J. Med. Food 2004, 7, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Lamar, A.S.; Fonseca, G.; Fuentes, J.L.; Cozzi, R.; Cundari, E.; Fiore, M.; Ricordy, R.; Perticone, P.; Degrassi, F.; Salvia, R.D. Assessment of the genotoxic risk of Punica granatum L. (Punicaceae) whole fruit extracts. J. Ethnopharmacol. 2008, 115, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, V.R.; Exposito, A. Las encuestas etnobotanicas sobre plantas medicinales en Cuba. Rev. Jard. Bot. Nacion. Univ. Habana 1995, 16, 77–144. [Google Scholar]
- Zhang, J.; Zhan, B.; Yao, X.; Gao, Y.; Shong, J. Antiviral activity of tannin from the pericarp of Punica granatum L. against genital Herpes virus in vitro. Zhongguo Zhong Yao Za Zhi 1995, 20, 556–558. [Google Scholar] [PubMed]
- Caballero, O.; Pena, B.R.; Zurcher, J.; Ortin, J.; Martinez, T. Actividad inhibitory de extractos del fruto de Punica granatum sobre cepas del virus de la gripe. Rev. Cubana Quim. 2001, XIII, 106. [Google Scholar]
- Pena, B.R.; Martinez, M.T. Inhibicion de la hemaaglutinacion de cepas de influenza A por un extracto liofilizado de granada BLBU. Rev. Cubana Quim. 2001, XIII, 395. [Google Scholar]
- Jurenka, J. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern Med Rev. 2008, 13, 128–144. [Google Scholar] [PubMed]
- Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007, 73, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Braga, L.C.; Shupp, J.W.; Cummings, C.; Jett, M.; Takahaski, J.A.; Carmo, L.S.; Chartone-Souza, E.; Nascimento, A.M.A. Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxin production. J. Ethnopharmacol. 2005, 96, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Melendez, P.A.; Capriles, V.A. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine 2006, 13, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Tomas-Berberan, A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agr. Food Chem. 2001, 48, 4581–4589. [Google Scholar] [CrossRef]
- Kulkarni, A.P.; Aradhya, S.M. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chem. 2005, 93, 319–324. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. The 9th International Supplement, M100-S9; NCCLS: Villanova, PA, USA, 1999. [Google Scholar]
- Sundar, R.K. Antibacterial activity of some medicinal plants of Papua New Guinea. Int. J. Pharmacol. 1996, 34, 223–225. [Google Scholar]
- Digrak, M.; Alma, M.H.; Ilcim, A.; Sen, S. Antibacterial and antifungal effects of various commercial plant extracts. Pharm. Biol. 1999, 37, 216–220. [Google Scholar] [CrossRef]
- Collins, C.M.; Lyne, P.M.; Grange, J.M. Antimicrobial sensitivity and assay tests. Collins and Lyne’s Microbiological Methods. Butterworths: London, UK, 1989. [Google Scholar]
- Bradshaw, L.J. Laboratory Microbiology, 4th Ed. ed; Saunders College Publishing: New York, USA, 1992. [Google Scholar]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kahkonen, M.; Kujala, T.; Pihlaja, K.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- SAS Instute. SAS online Doc. Version 8; SAS Inst.: Cary, NC, USA, 2005. [Google Scholar]
- Ozgen, M.; Serce, S.; Gunduz, K.; Yen, F.; Kafkas, E.; Paydas, S. Determining total phenolics and antioxidant capacities of selected Fragaria genotype. Asian J. Chem. 2007, 19, 5573–5581. [Google Scholar]
- Ozgen, M.; Serce, S.; Kaya, C. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and M. rubra fruits. Sci. Hortic. 2009, 119, 275–279. [Google Scholar] [CrossRef]
- Mathabe, M.C.; Nikolova, R.V.; Lall, N.; Nyazema, N.Z. Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. J. Ethnopharmacol. 2005, 105, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug and resistant human pathogens. J. Ethnopharmacol. 2001, 74, 113–123. [Google Scholar] [CrossRef]
- Prashanth, D.J.; Asha, M.K.; Amit, A. Antibacterial activity of Punica granatum. Fitoterapia 2001, 72, 171–173. [Google Scholar] [CrossRef]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Kahkonen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.; Chorianopoulos, N.; Nychas, G.J.E.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.A.; Ferreira, I.C.F.R.; Marcelino, F.; Valentao, P.; Andrade, F.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Table olives from Portugal: phenolic compounds, antioxidant potential and antimicrobial activity. J. Agric. Food Chem. 2006, 54, 8425–8431. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.A.; Ferreira, I.C.F.R.; Marcelino, F.; Valentao, P.; Andrade, F.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrancosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Oliveria, I.; Sousa, A.; Morais, J.S.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Chemical composition and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars. Food Chem.Toxicol. 2008, 46, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Shoko, T.; Soichi, T.; Megumi, M.M.; Eri, F.; Jun, K.; Michiko, W. Isolation and identification of an antibacterial compound from grape and its application to foods. Nippon Nogeikagaku Kaishi 1999, 73, 125–128. [Google Scholar]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Genotype | aL | aa | ab | aChroma | ahue | bTSS | cAcidity | pH | dTP | eTMA | fTEAC | gFRAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dikenli Incekabuk | 70.5 | 18.4 | 34.1 | 41.0 | 63.1 | 16.9 | 1.88 | 2.71 | 1395 | 38.24 | 5.84 | 7.84 |
Eksi | 73.6 | 3.9 | 39.2 | 40.6 | 83.8 | 16.7 | 1.70 | 2.88 | 1465 | 37.53 | 5.33 | 7.52 |
Kan | 57.3 | 35.0 | 30.4 | 46.6 | 41.7 | 17.3 | 1.92 | 2.94 | 2076 | 218.93 | 7.70 | 10.92 |
Katirbasi | 74.3 | 1.6 | 40.8 | 41.6 | 87.4 | 15.9 | 1.18 | 3.14 | 1326 | 41.23 | 4.38 | 5.37 |
Serife | 73.7 | 17.5 | 29.8 | 37.4 | 62.6 | 15.8 | 2.98 | 2.75 | 1532 | 18.01 | 5.64 | 7.80 |
Tatli | 67.0 | 15.3 | 34.6 | 38.9 | 66.4 | 15.4 | 0.42 | 3.15 | 1245 | 6.12 | 4.73 | 4.63 |
Microorganisms | Cultivars | Reference antibiotics/DIZa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Kan | Katirbasi | Tatli | Serife | Eksi | Dikenli Incekabuk | Mean | S10b | T10c | N100d | |
Bacillus megaterium | 18.0 | 0.0 | 0.0 | 20.0 | 17.7 | 18.7 | 12.4 E | 17 | 16 | nt† |
Pseudomonas aeruginosa | 20.3 | 0.0 | 0.0 | 19.3 | 20.7 | 21.0 | 13.6 C | 14 | 12 | nt |
Staphylococcus aureus | 12.7 | 0.0 | 0.0 | 20.3 | 17.7 | 15.7 | 11.1 G | 17 | 13 | nt |
Corynebacterium xerosis | 21.7 | 0.0 | 0.0 | 20.3 | 14.0 | 19.3 | 12.6 E | 15 | 13 | nt |
Escherichia coli | 23.0 | 21.3 | 0.0 | 25.0 | 26.0 | 22.7 | 19.7 A | - | 10 | nt |
Enterococcus faecalis | 12.7 | 0.0 | 0.0 | 24.0 | 15.7 | 23.3 | 12.6 E | 17 | 12 | nt |
Micrococcus luteus | 15.0 | 0.0 | 0.0 | 17.7 | 20.7 | 16.3 | 11.6 F | - | - | nt |
Kluvyeromyces marxianus | 18.3 | 0.0 | 0.0 | 24.3 | 16.3 | 19.7 | 13.1 D | nt | nt | 13 |
Rhodotorula rubra | 15.3 | 0.0 | 16.7 | 17.0 | 22.0 | 15.3 | 14.4 B | nt | nt | 14 |
Candida albicans | 20.7 | 0.0 | 0.0 | 23.3 | 23.7 | 0.0 | 11.3 H | nt | nt | 18 |
Mean | 17.8 c* | 2.1 e | 1.7 f | 21.1 a | 19.4 b | 17.2 d | 13.2 |
Microorganisms | cfua/mL inoculum | Minimal Inhibitory Concentrations (MIC- µg/mL) | |||||
---|---|---|---|---|---|---|---|
Cultivars | |||||||
Kan | Katirbasi | Tatli | Serife | Eksi | Dikenli Incekabuk | ||
Bacillus megaterium | 107 | 40 | >90 | >90 | 40 | 40 | 40 |
Pseudomonas aeruginosa | 107 | 40 | >90 | >90 | 40 | 40 | 40 |
Staphylococcus aureus | 107 | 50 | >90 | >90 | 40 | 40 | 40 |
Corynebacterium xerosis | 107 | 40 | >90 | >90 | 40 | 50 | 40 |
Escherichia coli | 107 | 40 | 30 | >90 | 30 | 30 | 30 |
Enterococcus faecalis | 107 | 40 | >90 | >90 | 30 | 40 | 30 |
Micrococcus luteus | 107 | 50 | >90 | >90 | 40 | 40 | 40 |
Kluvyeromyces marxianus | 106 | 40 | >90 | >90 | 40 | 40 | 40 |
Rhodotorula rubra | 106 | 50 | >90 | 40 | 40 | 40 | 40 |
Candida albicans | 106 | 30 | >90 | >90 | 40 | 40 | >90 |
Microorganisms | L | a | b | Chroma | hue | TSS | Acidity | pH | TP | TMA | TEAC | FRAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacillus megaterium | 0.35 | 0.56 | 0.11 | 0.54 | 0.49 | -0.38 | -0.20 | 0.22 | 0.69 | 0.66 | 0.64 | 0.68 |
Pseudomonas aeruginosa | 0.41 | 0.58 | 0.15 | 0.55 | 0.52 | -0.44 | -0.15 | 0.14 | 0.68 | 0.67 | 0.59 | 0.64 |
Staphylococcus aureus | 0.29 | 0.57 | 0.05 | 0.56 | 0.45 | -0.37 | -0.15 | 0.34 | 0.65 | 0.63 | 0.67 | 0.67 |
Corynebacterium xerosis | 0.28 | 0.52 | 0.05 | 0.50 | 0.44 | -0.32 | -0.31 | 0.18 | 0.71 | 0.62 | 0.61 | 0.67 |
Escherichia coli | 0.46 | 0.37 | 0.32 | 0.33 | 0.36 | -0.46 | -0.06 | 0.05 | 0.90 | 0.97 | 0.87 | 0.76 |
Enterococcus faecalis | 0.32 | 0.69 | 0.05 | 0.66 | 0.63 | -0.51 | -0.44 | 0.54 | 0.71 | 0.62 | 0.74 | 0.81 |
Micrococcus luteus | 0.39 | 0.56 | 0.15 | 0.54 | 0.47 | -0.40 | -0.02 | 0.16 | 0.62 | 0.66 | 0.59 | 0.60 |
Kluvyeromyces marxianus | 0.28 | 0.57 | 0.01 | 0.57 | 0.46 | -0.34 | -0.31 | 0.34 | 0.71 | 0.63 | 0.69 | 0.72 |
Rhodotorula rubra | 0.07 | -0.33 | -0.09 | -0.34 | 0.19 | -0.01 | 0.21 | 0.09 | 0.11 | 0.08 | 0.12 | 0.02 |
Candida albicans | 0.09 | -0.01 | -0.02 | -0.09 | -0.22 | 0.24 | 0.40 | -0.20 | 0.32 | 0.38 | 0.32 | 0.18 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Duman, A.D.; Ozgen, M.; Dayisoylu, K.S.; Erbil, N.; Durgac, C. Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics. Molecules 2009, 14, 1808-1817. https://doi.org/10.3390/molecules14051808
Duman AD, Ozgen M, Dayisoylu KS, Erbil N, Durgac C. Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics. Molecules. 2009; 14(5):1808-1817. https://doi.org/10.3390/molecules14051808
Chicago/Turabian StyleDuman, Ahmet D., Mustafa Ozgen, Kenan S. Dayisoylu, Nurcan Erbil, and Coskun Durgac. 2009. "Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics" Molecules 14, no. 5: 1808-1817. https://doi.org/10.3390/molecules14051808
APA StyleDuman, A. D., Ozgen, M., Dayisoylu, K. S., Erbil, N., & Durgac, C. (2009). Antimicrobial Activity of Six Pomegranate (Punica granatum L.) Varieties and Their Relation to Some of Their Pomological and Phytonutrient Characteristics. Molecules, 14(5), 1808-1817. https://doi.org/10.3390/molecules14051808