New Benzoyl Glucosides and Cytotoxic Pterosin Sesquiterpenes from Pteris ensiformis Burm.
Abstract
:Introduction
Results and Discussion
Structure Determinations of Isolated Compounds
+19800 (MeOH)} of 2R,3R-pterosin L [13]. Additionally, this configuration (2R,3R) was confirmed by NOESY correlations of H-10/H-3 and H-11/H-1′ (Figure 2). Thus, the structure of compound 1, 2R,3R-pterosin L 3-O-β-D-glucopyranoside, was determined.

| Position | 1H-NMR | 13C-NMR | ||
|---|---|---|---|---|
| 2 | 3 | 2 | 3 | |
| 1 | 131.0 | 131.0 | ||
| 2 | 8.09 (1H, dd, 8.3, 1.4) | 8.11 (1H, dd, 8.3, 1.4) | 131.0 | 131.0 |
| 3 | 7.50 (1H, td, 8.3, 1.4) | 7.50 (1H, td, 8.3, 1.4) | 129.6 | 129.5 |
| 4 | 7.63 (1H, tt, 8.3, 1.4) | 7.62 (1H, tt, 8.3, 1.4) | 134.6 | 134.4 |
| 5 | 7.50 (1H, td, 8.3, 1.4) | 7.50 (1H, td, 8.3, 1.4) | 129.6 | 129.5 |
| 6 | 8.09 (1H, dd, 8.3, 1.4) | 8.11 (1H, dd, 8.3, 1.4) | 131.0 | 131.0 |
| 7 | 166.3 | 166.4 | ||
| 7-O-β-glucoside | ||||
| 1′ | 5.84 (1H, d, 8.0) | 5.86 (1H, d, 8.0) | 94.8 | 94.7 |
| 2′ | 3.69 (1H, m) | 3.73 (1H, m) | 83.7 | 83.4 |
| 3′ | 3.68 (1H, m) | 3.72 (1H, m) | 77.5 | 77.6 |
| 4′ | 3.46 (1H, m) | 3.49 (1H, m) | 70.6 | 70.7 |
| 5′ | 3.45 (1H, m) | 3.48 (1H, m) | 78.8 | 78.9 |
| 6′a | 3.86 (1H, dd, 12.3, 2.1) | 3.87 (1H, dd, 12.3, 2.1) | 62.2 | 62.2 |
| 6′b | 3.71 (1H, dd, 12.3, 8.4) | 3.73 (1H, dd, 12.3, 8.4) | ||
| 2′-O-β-xylosyl | ||||
| 1″ | 4.47 (1H, d, 7.6) | 4.63 (1H, d, 7.6) | 106.8 | 106.5 |
| 2″ | 3.15 (1H, dd, 8.8, 7.6) | 3.31 (1H, m) | 75.7 | 75.8 |
| 3″ | 3.43 (1H, t, 8.8) | 3.70 (1H, m) | 77.5 | 74.8 |
| 4″ | 3.30 (1H, m) | 4.77 (1H, ddd,11.2, 9.6, 5.2) | 70.9 | 73.4 |
| 5″ax. | 2.29 (1H, dd, 11.2, 9.6) | 3.16 (1H, dd, 11.2, 9.6) | 67.1 | 63.7 |
| 5″equ. | 3.39 (1H, dd, 11.2, 4.8) | 3.68 (1H, dd, 11.2, 4.8) | ||
| 5″-O-β-benzoyl | ||||
| 1‴ | 130.9 | |||
| 2‴ | 8.00 (1H, dd, 8.3, 1.4) | 130.6 | ||
| 3‴ | 7.46 (1H, td, 8.3, 1.4) | 129.6 | ||
| 4‴ | 7.60 (1H, tt, 8.3, 1.4) | 134.7 | ||
| 5‴ | 7.46 (1H, td, 8.3, 1.4) | 129.6 | ||
| 6‴ | 8.00 (1H, dd, 8.3,1.4) | 130.6 | ||
| 7‴ | 167.3 | |||
| Key HMBC | H-1′/C-7, H-1″/C-2′ | H-1′/C-7, H-1″/C-2′, H-4″/C-7‴ | ||

: -16.0o (c 0.20, MeOH)} [18], β-D-glucopyranosyl benzoic acid ester (6) [19], benzoic acid (7) [19], 5-O-coumaroylquinic acid (8) {
: -30.5o (c 0.22, MeOH)} [20], coumaric acid (9) [21], cyclolaudenol (10) {
: +23.5o (c 0.25, MeOH)} [22], β-sitosterol-3-O-β-D-glucoside (11) {
: -50.1° (c 0.10, MeOH)} [23], and β-D-sitosterol (12) {
: -20.0o (c 0.18, MeOH)} [23], were determined by comparison with their spectroscopic data as reported in the corresponding literature.Cytotoxic activity of Isolated Compounds
Experimental
General
Plant Material
Extraction and Isolation
: -38.1o (c 0.31, MeOH); CD
: +19800 (MeOH); UV: λmax (log ε): 260 (3.90), 219 (4.53) nm; IR (Neat): υmax = 3400, 1689 cm-1; 1H-NMR (CD3OD, 400 MHz): ppm δ 7.53 (1H, s, H-4), 4.97 (1H, s, H-3), 3.61 (2H, t, J = 8.4, H-14), 3.37 (2H, AB q, J = 12.1, H-11), 3.01 (2H, t, J = 8.4, H-13), 2.66 (3H, s, H-15), 2.48 (3H, s, H-12), 1.21 (3H, s, H-10); sugar signals: ppm δ 4.66 (1H, d, J = 7.6, H-1′), 3.93 (1H, dd, J = 12.3, 2.1 H-6′a), 3.75 (1H, dd, J = 12.3, 8.1, H-6′b), 3.40 (1H, m, H-3′), 3.38 (1H, m, H-2′), 3.31 (1H, m, H-4′), 3.22 (1H, m, H-5′); 13C-NMR (CD3OD, 100 MHz): ppm δ 208.5 (C-1), 151.3 (C-9), 145.1 (C-4), 137.4 (C-5), 136.7 (C-6), 131.6 (C-7), 125.2 (C-8), 83.8 (C-3), 65.9 (C-11), 60.3 (C-14), 56.1 (C-2), 31.8 (C-13), 20.2 (C-12), 17.5 (C-10), 12.9 (C-15), sugar signals: ppm δ 104.4 (C-1′), 77.0 (C-5′), 76.0 (C-3′), 74.3 (C-2′), 70.4 (C-4′), 61.5 (C-6′); LR ESI-MS m/z 449.0 [M+Na]+; HR ESI-MS m/z 449.1787 (calcd. for C21H30O9Na, 449.1789).
: -20.7o (c 0.31, MeOH); UV (MeOH): λmax (log ε): 264 (3.83) nm; IR (Neat): υmax = 1745 cm-1; 1H-NMR (CDCl3, 400 MHz): ppm δ 7.39 (1H, d, J = 5.0 Hz, H-3), 6.24 (1H, d, J = 5.0 Hz, H-4), 5.47 (1H, t, J = 5.0 Hz, H-6), 4.53 (2H, d, J = 5.0 Hz, H-7); 13C-NMR (CDCl3, 100 MHz): ppm δ 169.5 (C-2), 120.6 (C-3), 143.6 (C-4),149.5 (C-5), 114.1 (C-6), 57.3 (C-7); LR ESI-MS m/z: 149 [M+Na]+.
: -16.0o (c 0.20, MeOH); 1H-NMR (200 MHz, CD3OD): ppm; δ 7.09 (1H, s, H-4), 3.76 (2H, t, J = 7.4 Hz, H-13), 3.02 (2H, t, J = 7.4 Hz, H-12), 2.68 (3H, s, H-14), 2.55-2.65 (2H, m, H-3), 2.43 (3H, s, H-11), 1.27 (3H, d, J = 6.3 Hz, H-10); 13C-NMR (50 MHz, CD3OD): ppm δ 210.3 (C-1), 152.6 (C-9), 144.4 (C-5), 138.0 (C-7), 134.8 (C-6), 132.5 (C-8), 125.8 (C-4), 61.6 (C-12), 42.8 (C-2), 34.7 (C-3), 32.8 (C-13), 21.4 (C-11), 16.8 (C-10), 13.7 (C-14); LR ESI-MS m/z: 241 [M+Na] +.
: -30.5o (c 0.22, MeOH): 1H-NMR (400 MHz, CD3OD): ppm δ 7.65 (d, J 16.0 Hz, H-7′), 7.48 (d, J 8.6 Hz, H-2′,6 ′), 6.84 (d, J 8.6 Hz, H-3′,5 ′), 6.34 (d, J = 16.0 Hz, H-8′), 5.33 (m, H-5), 3.90 (d, J = 3.1 Hz, H-3), 3.77 (dd, J = 8.6, 3.0 Hz, H-4), 2.01-2.29 (m, H-2, -6); 13C-NMR (100 MHz, CD3OD): ppm δ 177.64 (C-7), 169.38 (C-9′), 161.48 (C-4′), 147.34 (C-7′), 131.69 (C-2′,6′), 127.70 (C-1′), 117.31 (C-3′,5 ′), 115.68 (C-8′), 76.60 (C-1), 73.82 (C-5), 72.43 (C-3), 72.43 (C-3), 71.66 (C-4), 39.14 (C-6), 38.56 (C-2); LR ESI-MS: m/z 339 [M+H]+.
: +23.5o (c 0.25, MeOH); 1H-NMR (400 MHz, CDCl3): ppm δ 4.67 (2H, m, H-26), 3.28 (1H, dd, J = 11.5, 4.5 Hz, H-3), 2.10 (1H, pseudosextet, J = 7.0 Hz, H-24), 1.96 (1H, m, H-11α), 1.87 (1H, m, H-7β), 1.75 (1H, m, H-2α), 1.64 (3H, brs, H-27), 1.60 (2H, m, H-12), 1.58 (1H, m, H-6α), 1.56 (m, H-1α, H-2β, H-17,), 1.50 (1H, m, H-8), 1.42 (1H, m, H-23a), 1.36 (1H, m, H-20), 1.33 (2H, m, H-16a, H-22a), 1.28 (4H, m, H-5, H-7α, H-15a,b), 1.24 (1H, m, H-1β), 1.10 (H, m, H-11β, H-16b, H-23a), 1.00 (3H, d, J = 7.0 Hz, H-31), 0.97 (3H, s, H-28), 0.96 (3H, s, H-18), 0.92 (H, m, H-22b), 0.89 (3H, s, H-30), 0.86 (3H, d, J = 6.5 Hz, H-21), 0.81 (3H, s, H-29), 0.80 (1H, m, H-6β), 0.55, 0.33 (each 1H, d, J = 4.5 Hz, H-19); 13C-NMR (CDCl3, 100 MHz): δ 150.2 (C-25), 109.4 (C-26), 78.9 (C-3), 52.3 (C-17), 48.8 (C-13), 48.0 (C-8), 47.1 (C-5), 45.3 (C-14), 41.6 (C-24), 40.5 (C-4), 36.0 (C-20), 35.6 (C-15), 33.9 (C-22), 32.9 (C-12), 32.0 (C-1), 31.5 (C-23), 30.4 (C-2), 29.9 (C-19), 28.1 (C-7), 26.5 (C-11), 26.1 (C-10), 26.0 (C-16), 25.4 (C-28), 21.1 (C-6), 20.1 (C-31), 20.0 (C-9), 19.3 (C-30), 18.7 (C-27), 18.3 (C-21), 18.0 (C-18), 14.0 (C-29); LR EI-MS: m/z 440 [M]+.
: -20.0o (c 0.18, MeOH); 1H-NMR (200 MHz , CDCl3): δ 5.25 (1H, d, J = 4.5 Hz, H-6), 5.12 (1H, dd, J = 12.3, 8.3 Hz, H-23), 5.02 (1H, dd, J = 12.3, 8.3 Hz, H-22), 4.35 (1H, d, J = 7.6 Hz, aromeric H), 3.45 (1H, m, H-3), 3.10-3.90 (5H, m, sugar moiety H), 1.01 (3H, s, H-19), 0.68 (3H, s, H-18), 0.94 (3H, d, J = 6.5 Hz, H-21), 0.86 (3H,t, J = 7.1 Hz, H-29), 0.84 (3H, s, H-27); LR EI-MS: m/z 576 [M]+.
: -50.1° (c 0.10, MeOH); 1H-NMR (200 MHz, CDCl3): δ 5.36 (1H, br s, H-6), 5.12 (1H, dd, J = 16.1, 8.3 Hz, H-23), 5.02 (1H, dd, J = 16.1, 8.3 Hz, H-22), 1.01 (3H, s, H-19), 0.92 (3H, d, J = 6.4 Hz, H-21), 0.86 (3H, t, J = 7.0 Hz, H-29), 0.84 (3H, d, J = 6.8 Hz, H-27), 0.81 (3H, d, J = 6.8 Hz, H-26), 0.68 (3H, s, H-18); LR EI-MS: m/z 412 [M]+.Cytotoxicity Assays
Acid hydrolysis of compound 1
Acknowledgements
References
- Wu, M.J.; Wang, L.; Weng, C.Y.; Lian, T.W. Immunomodulatory mechanism of the aqueous extract of sword brake fern (Pteris ensiformis Burm.). J. Ethnopharmacol. 2005, 98, 73–81. [Google Scholar] [CrossRef]
- Gong, X.L.; Chen, Z.H.; Liang, N.C. Advances in study on chemical constituents and pharmacological activities of plants of genus Pteris. Zhongguo Zhong Yao Za Zhi 2007, 32, 1382–1387. [Google Scholar]
- Castillo, U.F.; Ojika, M.; Alonso-Amelot, M.; Sakagamia, Y.; Ptaquiloside, Z. a new toxic unstable sesquiterpene glucoside from the neotropical bracken fern Pteridium Aquilinum Var. Caudatum. Bioorg. Med. Chem. 1998, 6, 2229–2233. [Google Scholar] [CrossRef]
- Jesudass, L.L.; Manickam, V.S.; Gopalakrishnan, S. Polyphenolic glycosides of Pteris confusa T.G. walker of kothayar hills of the western ghats of south India. Res. J. Chem. Environ. 2000, 4, 77–78. [Google Scholar]
- Salatino, M.L.; Prado, F. Flavonoid glycosides of Pteridaceae from Brazil. J. Bio. System. Eco. 1998, 26, 761–769. [Google Scholar] [CrossRef]
- Tanaka, N.; Murakami, T.; Saiki, Y.; Chen, C.M.; Gomez, L.D. Chemical and chemotaxonomical studies of the Pteris family and related families (Pteridaceae). XXII. Chemical studies of Pteris grandifolia L. Chem. Pharm. Bull. 1978, 26, 3580–3582. [Google Scholar] [CrossRef]
- Woerdenbag, H.J.; Lutke, L.R.; Bos, R.; Stevens, J.F. Isolation of two cytotoxic diterpenes from the fern Pteris multifida. Zeitschrift Naturforsch C: Biosci. 1996, 51, 635–638. [Google Scholar]
- Saito, K.; Nagao, T.; Takatsuki, S.; Koyama, K.; Natori, S. The sesquiterpenoid carcinogen of bracken fern, and some analogs, from the Pteridaceae. Phytochemistry 1990, 29, 1475–1479. [Google Scholar] [CrossRef]
- Murakami, T.; Satake, T.; Ninomiya, K.; Iida, H.; Yamauchi, K.; Tanaka, N.; Saiki, Y.; Chen, C.M. Chemical and chemotaxonomic studies of ferns. Part 25. Pterosin derivatives from the family Pteridaceae. Phytochemistry 1980, 19, 1743–1746. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, D.-y. Review on the sesquiterpenoids from the spices of Pteridaceae. (II) - Chemical synthesis, transformation and biological activities of 1H-inden-1-one sesquiterpenoids. Huaxue Yanjiu 2004, 15, 66–70. [Google Scholar]
- McMorris, T.C.; Kelner, M.J.; Wang, W.; Estes, L.A.; Montoya, M. A.; Taetlel, R. Structure-activity relationships of illudins: analogs with improved therapeutic index. J. Org. Chem. 1992, 57, 6876–6883. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chang, F.R.; Lin, Y.J.; Wang, L.; Chen, J.F.; Wu, Y.C.; Wu, M.J. Identification of phenolic antioxidants from Sword Brake fern (Pteris ensiformis Burm.). Food Chem. 2007, 105, 48–56. [Google Scholar] [CrossRef]
- Kuraishi, T.; Murakami, T.; Taniguchi, T.; Kobuki, Y.; Maehashi, H.; Tanaka, N.; Saiki, Y.; Chen, C. M. Chemical and chemotaxonomical studies of ferns. LIV. Pterosin derivatives of the genus Microlepia (Pteridaceae). Chem. Pharm. Bull. 1985, 33, 2305–2312. [Google Scholar] [CrossRef]
- Roen, A.; Padron, J.I.; Vazquez, J.T. Hydroxymethyl rotamer populations in disaccharides. J. Org. Chem. 2003, 68, 4615–4630. [Google Scholar] [CrossRef]
- Cabrita, L.; Andersen, Q.M. Anthocyanins in blue berries of vaccinium padifolium. Phytochemistry 1999, 52, 1693–1696. [Google Scholar] [CrossRef]
- Tanaka, N.; Yuhara, H.; Wada, H.; Murakami, T.; Cambie, R. C.; Braggins, J. E. Chemical and chemotaxonomical studies of ferns. Part 82. Phenolic constituents of Pteridium esculentum. Phytochemistry 1993, 32, 1037–1039. [Google Scholar] [CrossRef]
- Siegel, K.; Bruckner, R. First total synthesis of dihydroxerulin, a potent inhibitor of the biosynthesis of cholesterol. Chem. Eur. J. 1988, 11, 16–22. [Google Scholar]
- Tanaka, N.; Satake, T.; Takahashi, A.; Mochizuki, M.; Murakami, T.; Saiki, Y.; Yang, J.Z.; Chen, C.M. Chemical and chemotaxonomical studies of Ferns XXXIX. Chemical studies on the constituents of Pteris bella Tagawa and Pteridium aquilinum subsp wightianum (wall) Shich. Chem. Pharm. Bull. 1982, 30, 3640–3646. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Rockenbach, J.; Wray, V. Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae. Phytochemistry 1995, 39, 375–378. [Google Scholar] [CrossRef]
- Bergman, M.; Varshavsky, L.; Gottlieb, H.; Grossman, S. The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry 2001, 58, 143–52. [Google Scholar] [CrossRef]
- Norbæk, R.; Nielsen, K.; Kondo, T. Anthocyanins from flowers of Cichorium intybus. Phytochemistry 2002, 60, 357–359. [Google Scholar] [CrossRef]
- Cantillo-Ciau, Z.; Brito-Loeza, W.; Quijano, L. Triterpenoids from Tillandsia fasciculate. J. Nat. Prod. 2001, 64, 953–955. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chang, F.R.; Wu, Y.C. The constituents of Lindera glauca. J. Chin. Chem. Soc. 2000, 47, 913–920. [Google Scholar]
- Kelner, M.J.; McMorris, T.C.; Beck, W.T.; Zamora, J.M.; Taetle, R. Preclinical evaluation of illudins as anticancer agents. Cancer Res. 1987, 47, 3186–3190. [Google Scholar]
- Kobayashi, A.; Egawa, H.; Koshimizu, K.; Mitsui, T. Antimicrobial constituents in Pteris inaequalis. Agric. Biol. Chem. 1975, 39, 1851–1856. [Google Scholar] [CrossRef]
- Sladowski, D.; Steer, S.; Clothier, R.H.; Balls, M.; Chihiro, I. An improved MTT assay. J. Immunol. Meth. 1993, 157, 203–207. [Google Scholar] [CrossRef]
- Sample availability: Contact the authors.
© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Chen, Y.-H.; Chang, F.-R.; Lu, M.-C.; Hsieh, P.-W.; Wu, M.-J.; Du, Y.-C.; Wu, Y.-C. New Benzoyl Glucosides and Cytotoxic Pterosin Sesquiterpenes from Pteris ensiformis Burm. Molecules 2008, 13, 255-266. https://doi.org/10.3390/molecules13020255
Chen Y-H, Chang F-R, Lu M-C, Hsieh P-W, Wu M-J, Du Y-C, Wu Y-C. New Benzoyl Glucosides and Cytotoxic Pterosin Sesquiterpenes from Pteris ensiformis Burm. Molecules. 2008; 13(2):255-266. https://doi.org/10.3390/molecules13020255
Chicago/Turabian StyleChen, Yung-Husan, Fang-Rong Chang, Mei-Chin Lu, Pei-Wen Hsieh, Ming-Jiuan Wu, Ying-Chi Du, and Yang-Chang Wu. 2008. "New Benzoyl Glucosides and Cytotoxic Pterosin Sesquiterpenes from Pteris ensiformis Burm." Molecules 13, no. 2: 255-266. https://doi.org/10.3390/molecules13020255
APA StyleChen, Y.-H., Chang, F.-R., Lu, M.-C., Hsieh, P.-W., Wu, M.-J., Du, Y.-C., & Wu, Y.-C. (2008). New Benzoyl Glucosides and Cytotoxic Pterosin Sesquiterpenes from Pteris ensiformis Burm. Molecules, 13(2), 255-266. https://doi.org/10.3390/molecules13020255

