Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe
Abstract
:1. Introduction
2. Results
2.1. Variation in Sensitivity of Fusarium Isolates to Essential Oils
2.2. Assessment of the Effectiveness of Individual Essential Oils
3. Discussion
4. Materials and Methods
- Cultures of fungi were grown in PDA medium for 14 days at 25 °C
- Inoculum. The spore suspension of Fusarium spp. in 0.01% sterile Tween 80 were obtained from 14 days old culture. The haemocytometer Thoma was used to obtain a spore suspension of 2 × 106 CFU·cm3. Petri dishes (9 cm diameter) containing 20 × cm3 PDA medium were inoculating this spore suspension and stored at 25 °C for 14 days. Inoculum—rings with a diameter of 10 mm overgrown by mycelium.
- Inoculum was placed on the surface of the oil-modified PDA medium.
- The samples were incubated at 25 °C. Every 2 days, the diameter of developing colonies was measured until the surface of the medium in the control plates was overgrown. Tests were performed in four repetitions (n = 4). One petri dish with inoculum (disc overgrown with pathogen mycelium) was treated as a repetition
- PDA medium with the Funaben T (at concentrations of 0.125; 0.25 and 0.50%) was used as a positive control. Unmodified PDA medium (without oils) with a ring was used as a negative control
Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Krzyśko-Łupicka, T.; Sokół, S.; Piekarska-Stachowiak, A. Evaluation of Fungistatic Activity of Eight Selected Essential Oils on Four Heterogeneous Fusarium Isolates Obtained from Cereal Grains in Southern Poland. Molecules 2020, 25, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquali, M.; Beyer, M.; Logrieco, A.; Audenaert, K.; Balmas, V.; Basler, R.; Boutigny, A.L.; Chrpová, J.; Czembor, E.; Gagkaeva, T.; et al. A European database of Fusarium graminearum and F. culmorum trichothecene genotypes. Front. Microbiol. 2016, 7, 406. [Google Scholar] [CrossRef] [Green Version]
- Avanço, G.B.; Ferreira, F.D.; Bomfim, N.S.; de Souza Rodrigues dos Santos, P.A.; Peralta, R.M.; Brugnari, T.; Mallmann, C.A.; Abreu Filho, B.A.; Mikcha, J.M.G.; Machinski, M. Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 2016, 73, 806–813. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; pp. 163–164. [Google Scholar]
- Somma, S.; Petruzzella, A.L.; Logrieco, A.F.; Meca, G.; Cacciola, O.S.; Moretti, A. Phylogenetic analyses of Fusarium graminearum strains from cereals in Italy, and characterisation of their molecular and chemical chemotypes. Crop Pasture Sci. 2014, 65, 52–60. [Google Scholar] [CrossRef]
- Bottalico, G. Perrone Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Vogelgsang, S.; Beyer, M.; Pasquali, M.; Jenny, E.; Musa, T.; Bucheli, T.D.; Wettstein, F.E.; Forrer, H.R. An eight-year survey of wheat shows distinctive effects of cropping factors on different Fusarium species and associated mycotoxins. Eur. J. Agron. 2019, 105, 62–77. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, B.; Gwiazdowski, R.; Bednarek-Bartsch, A. Influence of some selected fungicides on Fusarium genus cultures growth limitation. Prog. Plant Prot. 2013, 53, 759–761. [Google Scholar]
- Zabka, M.; Pavela, R.; Slezakova, L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Ind. Crops Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
- Matusinsky, P.; Zouhar, M.; Pavela, R.; Novy, P. Antifungal effect of five essential oils against important pathogenic fungi of cereals. Ind. Crops Prod. 2015, 67, 208–215. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Kumar, A.; Sharma, A. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp. J. Food Sci. Technol. 2016, 53, 3725–3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gakuubi, M.M.; Maina, A.W.; Wagacha, J.M. Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh against selected Fusarium spp. Int. J. Microbiol. 2017, 7, 8761610. [Google Scholar]
- Hara, P.; Szparaga, A.; Czerwińska, E. Ecological Methods Used to Control Fungi that Cause Diseases of the Crop Plant. Annu. Set Environ. Protect. 2018, 20, 1764–1775. [Google Scholar]
- Perczak, A.; Gwiazdowska, D.; Marchwińska, K.; Juś, K.; Gwiazdowski, R.; Waśkiewicz, A. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch. Microbiol. 2019, 201, 1085–1097. [Google Scholar] [CrossRef] [Green Version]
- Krzyśko-Łupicka, T.; Walkowiak, W. Evaluation of susceptibility of phytopathogenic Fusarium culmorum strain on selected essential oils. Ecol. Chem. Eng. A 2014, 21, 355–366. [Google Scholar] [CrossRef]
- Krzyśko-Łupicka, T.; Walkowiak, W.; Białoń, M. Comparison of the fungistatic activity of selected essential oils relative to Fusarium graminearum isolates. Molecules 2019, 24, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, F.M.D.; Hirooka, E.Y.; Ferreira, F.D.; Silva, M.V.; Mossini, S.A.G.; Machinski, M.J. Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro. Food Addit. Contam Part A 2018, 35, 2168–2174. [Google Scholar] [CrossRef]
- Giamperi, L.; Bucchini, A.E.A.; Ricci, D.; Tirillini, B.; Nicoletti, M.; Rakotosaona, R.; Maggi, F. Vepris macrophylla (Baker) I. Verd Essential Oil: An Antifungal Agent against Phytopathogenic Fungi. Int. J. Mol. Sci. 2020, 21, 2776. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes. World. Annu Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Naeini, A.; Ziglarib, T.; Shokrib, H.; Khosravi, A.R. Assessment of growth-inhibiting effect of some plant essential oils on different Fusarium isolates. J. Med. Mycol. 2010, 20, 174–178. [Google Scholar] [CrossRef]
- Mackay, T.F.C.; Stone, E.A.; Ayroles, J.F. The genetics of quantitative traits: Challenges and prospects. Nat. Rev. Genet. 2009, 10, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Waalwijk, C.; Taga, M.; Zheng, S.L.; Proctor, R.H.; Vaughan, M.M.; O’Donnell, K. Karyotype evolution in Fusarium. IMA Fungus 2018, 9, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Ayukawa, Y.; Komatsu, K.; Taga, M.; Arie, T. Cytological karyotyping of Fusarium oxysporum by the germ tube burst method (GTBM). J. Gen. Plant Pathol. 2018, 84, 254–261. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A. Horizontal gene transfer in fungi. FEMS Microbiol. Lett. 2012, 329, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef]
- Tuveson, R.W.; Garber, E.D. Genetics of phytopathogenic fungi. IV. Experimentally induced alterations in nuclear ratios of heterocaryons of Fusarium oxysporium F. Pisi. Genetics 1961, 46, 485–492. [Google Scholar] [CrossRef]
- Teunissen, H.A.S.; Verkooijen, J.; Cornelissen, B.J.C.; Haring, M.A. Genetic exchange of avirulence determinants and extensive karyotype rearrangements in parasexual recombinants of Fusarium oxysporum. Mol. Gen. Genom. 2002, 268, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Láday, M.; Mulè, G.; Moretti, A.; Hamari, Z.; Juhász, Á.; Szécsi, Á.; Logrieco, A. Mitochondrial DNA variability in Fusarium proliferatum (Gibberella intermedia). Eur. J. Plant Pathol. 2004, 110, 563–571. [Google Scholar] [CrossRef]
- Brankovics, B.; van Dam, P.; Rep, M.; Sybren de Hoog, G.; van der Lee, T.A.J.; Waalwijk, C.; van Diepeningen, A.D. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex. BMC Genom. 2017, 18, 735. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Rai, S.; Maurya, D.K.; Kashyap, P.L.; Srivastava, A.K.; Anandaraj, M. Cross-species transferability of microsatellite markers from Fusarium oxysporum for the assessment of genetic diversity in Fusarium udum. Phytoparasitica 2013, 41, 615–622. [Google Scholar] [CrossRef]
- Duggal, A.; Dumas, M.T.; Jeng, R.S.; Hubbes, M. Ribosomal variation in six species of Fusarium. Mycopathologia 1997, 140, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Kageyama, K.; Shimizu, M.; Hyakumachi, M. A natural mutation involving both pathogenicity and perithecium formation in the Fusarium graminearum species complex. G3 Genes Genomes Genet. 2016, 6, 3883–3892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zehraoui, E.; Atanasoff-Kardjalieff, A.K.; Strauss, J.; Studt, L.; Ponts, N. Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum. PLoS Genet. 2020, 16, e1009125. [Google Scholar] [CrossRef] [PubMed]
- Magdama, F.; Monserrate-Maggi, L.; Serrano, L.; Onofre, J.G.; del Mar Jiménez-Gasco, M. Genetic diversity of Fusarium oxysporum f. sp. cubense, the Fusarium wilt pathogen of banana, in Ecuador. Plants 2020, 9, 1133. [Google Scholar] [CrossRef]
- Halpern, H.C.; Qi, P.; Kemerait, R.C.; Brewer, M.T. Genetic diversity and population structure of races of Fusarium oxysporum causing cotton wilt. G3 Genes Genomes Genet. 2020, 10, 3261–3269. [Google Scholar] [CrossRef]
- Groenewald, S.; van den Berg, N.; Marasas, W.F.O.; Viljoen, A. Biological, physiological and pathogenic variation in a genetically homogenous population of Fusarium oxysporum f. sp. cubense. Australas. Plant Pathol. 2006, 35, 401–409. [Google Scholar] [CrossRef]
- Covo, S. Genomic Instability in Fungal Plant Pathogens. Genes 2020, 11, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampersad, S.N. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens 2020, 9, 340. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual, 1st ed.; Blackwell Scientific Publications: Hoboken, NJ, USA, 2006; 400p. [Google Scholar]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Numpaque, M.A.; Oviedo, L.A.; Gil, J.H.; García, C.M.; Durango, D.L. Thymol and carvacrol: Biotransformation and antifungal activity against the plant pathogenic fungi Colletotrichum acutatum and Botryodiplodia theobromae. Trop. Plant Pathol. 2011, 36, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Zuzarte, M.; Vale-Silva, L.; Gonçalves, M.J.; Cavaleiro, C.; Vaz, S.; Canhoto, J.; Pinto, E.; Salgueiro, L. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1359–1366. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Navarro-Cruz, A.R.; Vera-López, O.; Palou, E.; Avila-Sosa, R. Growth modelling to control (in vitro) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol. Rev. Argent. Microbiol. 2018, 50, 70–74. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboodyb, M.S.; Vijayakumarb, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Du, S.; Chen, S.; Sun, H. Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. J. Food Sci. Technol. 2019, 56, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.; Kedia, A.; Mishra, P.K.; Dubey, N.K. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities—Potentials and challenges. Food Control 2015, 47, 381–391. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Dhamodaran, N.; Siddaiah, C.; Mudili, V.; Sreepathi, M.H. Antifungal and Zearalenone Inhibitory Activity of Ocimum sanctum L. Essential Oil on Fusarium graminearum Determined by UHPLC and RT-qPCR. Bio-Protocol 2016, 6, e1893. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Perczak, A.; Gwiazdowska, D.; Gwiazdowski, R.; Juś, K.; Marchwińska, K.; Waśkiewicz, A. The Inhibitory Potential of Selected Essential Oils on Fusarium spp. Growth and Mycotoxins Biosynthesis in Maize Seeds. Pathogens 2020, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva-Bermejo, D.; Angelov, I.; Vicente, G.; Stateva, R.P.; Rodriguez García-Risco, M.; Reglero, G.; Ibañez, E.; Fornari, T. Extraction of thymol from different varieties of thyme plantsusing green solvents. J. Sci. Food Agric. 2015, 95, 2901–2907. [Google Scholar] [CrossRef]
- Gavarić, N.; Smole Možina, S.; Kladar, N.; Bozin, B. Chemical Profile, Antioxidant and Antibacterial Activity of Thyme and Oregano Essential Oils, Thymol and Carvacrol and Their Possible Synergism. J. Essent. Oil Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling 2018, 6, 630–656. [Google Scholar] [CrossRef]
- Barrera-Necha, L.L.; Garduno-Pizana, C.; Garcia-Barrera, L.J. In vitro Antifungal Activity of Essential Oils and Their Compounds on Mycelial Growth of Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen. Plant Pathol. J. 2009, 8, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Seseni, L.; Regnier, T.; Roux van der Merwe, M.P.; Mogale, E.; Badenhorst, J. Control of Fusarium spp. causing damping off of pine seedlings by means of selected essential oils. Ind. Crops Prod. 2015, 76, 329–332. [Google Scholar] [CrossRef]
- Ćosić, J.; Vrandečić, K.; Postić, J.; Jurković, D.; Ravlić, M. In vitro antifungal activity of essential oils on growth of phytopathogenic fungi. Poljoprivreda 2010, 16, 25–28. [Google Scholar]
- Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiol. Open 2017, 6, e00459. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Regnier, T.; Olivier, E.I. Antimicrobial activities of selected essential oils against Fusarium oxysporum isolates and their biofilms. S. Afr. J. Bot. 2015, 99, 115–121. [Google Scholar] [CrossRef]
- Simić, A.; Soković, M.D.; Ristić, M.; Grujić-Jovanović, S.; Vukojević, J.; Marin, P.D. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother. Res. 2004, 18, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, V.M.; Conti, R.; Araújo, J.M.; Souza-Motta, C.M. Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 2011, 53, 89–95. [Google Scholar] [CrossRef]
- Maggi, F.; Randriana, R.F.; Rasoanaivo, P.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Papa, F.; et al. Chemical composition and in vitro biological activities of the essential oil of Veprys macrophylla (Baker) I. Verd. Endemic to Madagascar. Chem. Biodivers. 2013, 10, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Dudai, N.; Weinstein, Y.; Krup, M.; Rabinski, T.; Ofir, R. Citral is a new inducer of caspase-3 in tumor cell lines. Planta Med. 2005, 71, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Tajidin, N.E.; Ahmad, S.H.; Rosenani, A.B.; Azimah, H.; Munirah, M. Chemical composition and citral content in lemongrass (Cymbopogon citratus) essential oil at three maturity stages. Afr. J. Biotechnol. 2012, 11, 2685–2693. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.; Tambor, K.; Herman, A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Curr. Microbiol. 2016, 72, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Thielmann, J.; Muranyi, P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Sadowska, K.; Łukaszewska-Skrzypniak, N.; Wojczyńska, J.; Stępniewska-Jarosz, S.; Tyrakowska, M.; Rataj-Guranowska, M. Evaluation of susceptibility of potential rape pathogens to selected essential oils. Prog. Plant Prot. 2017, 57, 201–205. [Google Scholar] [CrossRef]
- Morcia, C.; Malanati, M.; Terzi, V. In vitro activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Jamiołkowska, A. Laboratory effect of azoxystrobin (Amistar 250 SC) and grapefruit extract (Biosept 33 SL) on growth of fungi colonizing zucchini plants. Acta Sci. Pol. Hortorum Cultus 2011, 10, 245–257. [Google Scholar]
- Hashem, M.; Moharam, A.M.; Zaied, A.A.; Saleh, F.E.M. Efficacy of essential oils in the control of cumin root rot disease caused by Fusarium spp. Crop Prot. 2010, 29, 1111–1117. [Google Scholar] [CrossRef]
- Macias, F.A.; Marin, D.; Oliveros-Bastidas, A.; Varela, R.M.; Simonet, A.M.; Carrera, C.; Molinillo, J.M. Allelopathy as a new strategy for sustainable ecosystems development. Biol. Sci. Space 2003, 17, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop Prot. 2015, 72, 57–65. [Google Scholar] [CrossRef]
- Feng, W.; Zheng, X. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 2007, 18, 1126–1130. [Google Scholar] [CrossRef]
- Riccioni, L.; Orzeli, L. Activity of tea tree (Melaleuca alternifolia, Cheel) and thyme (Thymus vulgaris, Linnaeus.) essential oil against some pathogenic seed borne fungi. J. Essent. Oil Res. 2011, 23, 43–47. [Google Scholar] [CrossRef]
- Białoń, M.; Krzyśko-Łupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P. Chemical composition of two different lavender essential oils and their effect on facial skin microbiota. Molecules 2019, 18, 3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, W.; Chen, J.; Zheng, X.; Liu, Q. Thyme oil to control Alternaria alternata in vitro and in vivo as fumigant and contact treatments. Food Control 2011, 22, 78–81. [Google Scholar] [CrossRef]
- Wagle, B.; Budathoki, U. Antifungal Activities of Essential Oils and Crude Extracts of Some Aromatic Plants against Fusarium Rot of Trichosanthes dioica. Nepal J. Sci. Technol. 2013, 13, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
Isolates | H (8, 212) | p |
---|---|---|
FAPL | 124.68 | 0.00 * |
FCPL | 123.34 | 0.00 * |
FC1D | 145.2 | 0.00 * |
FC2D | 114.44 | 0.00 * |
FGPL | 131.64 | 0.00 * |
FG1D | 120.18 | 0.00 * |
FG2D | 115.97 | 0.00 * |
FOPL | 111.1 | 0.00 * |
FP0D | 111.5 | 0.00 * |
Oil | Isolate | N | Mean | SD | Isolate | N | Mean | SD | Isolate | N | Mean | SD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grapefruit | 28 | 44.57 | 6.72 | 28 | 43.13 | 8.98 | 28 | 46.87 | 8.04 | |||
Cajeput | 28 | 22.52 | 22.82 | 28 | 17.00 | 20.65 | 27 | 15.75 | 16.13 | |||
Lemongrass | 28 | 0.75 | 2.37 | 28 | 0.00 | 0.00 | 28 | 1.06 | 2.68 | |||
Litsea cubeba | 28 | 1.48 | 4.00 | 28 | 0.00 | 0.00 | 28 | 1.71 | 5.53 | |||
Thyme | FC2D | 28 | 0.00 | 0.00 | FC1D | 28 | 0.00 | 0.00 | FGPL | 29 | 0.00 | 0.00 |
Tea tree | 28 | 16.17 | 21.85 | 28 | 13.31 | 18.69 | 28 | 10.97 | 15.52 | |||
Verbena | 28 | 3.62 | 6.66 | 28 | 0.98 | 2.49 | 28 | 4.04 | 8.55 | |||
Control | 12 | 49.18 | 0.13 | 12 | 50.02 | 0.11 | 12 | 49.86 | 0.19 | |||
Funaben T | 4 | 0.00 | 0.00 | 4 | 0.00 | 0.00 | 4 | 0.00 | 0.00 | |||
Grapefruit | 28 | 40.51 | 11.98 | 27 | 38.19 | 11.65 | 28 | 45.81 | 2.4 | |||
Cajeput | 28 | 20.36 | 20.88 | 28 | 15.06 | 17.71 | 27 | 21.06 | 18.65 | |||
Lemongrass | 28 | 2.44 | 6.10 | 28 | 0.76 | 1.89 | 28 | 4.65 | 8.55 | |||
Litsea cubeba | 28 | 2.42 | 6.04 | 28 | 0.68 | 1.70 | 28 | 4.66 | 8.54 | |||
Thyme | FG2D | 28 | 0.00 | 0.00 | FCPL | 27 | 0.00 | 0.00 | FAPL | 28 | 0.00 | 0.00 |
Tea tree | 28 | 15.76 | 22.04 | 28 | 11.32 | 16.57 | 28 | 17.12 | 19.38 | |||
Verbena | 28 | 3.73 | 9.31 | 28 | 1.79 | 3.00 | 28 | 6.8 | 11.19 | |||
Control | 12 | 49.15 | 0.40 | 12 | 49.83 | 0.33 | 12 | 48.03 | 0.09 | |||
Funaben T | 4 | 0.00 | 0.00 | 4 | 00.00 | 0.00 | 4 | 00.00 | 0.00 | |||
Grapefruit | 28 | 42.59 | 13.22 | 28 | 40.69 | 10.43 | 28 | 43.52 | 6.34 | |||
cajeput | 28 | 21.09 | 22.36 | 28 | 19.58 | 19.22 | 28 | 19.75 | 18.75 | |||
Lemongrass | 28 | 2.96 | 8.08 | 28 | 4.5 | 11.22 | 28 | 5.09 | 9.06 | |||
Litsea cubeba | 28 | 1.10 | 2.74 | 28 | 5.36 | 13.36 | 28 | 4.71 | 8.07 | |||
Thyme | FG1D | 28 | 0.00 | 0.00 | FP0D | 28 | 0.00 | 0.00 | FOPL | 28 | 1.77 | 2.94 |
Tea tree | 28 | 16.3 | 22.5 | 28 | 16.79 | 21.84 | 28 | 13.9 | 17.36 | |||
Verbena | 28 | 1.90 | 3.10 | 28 | 6.02 | 11.09 | 28 | 3.1 | 5.39 | |||
Control | 12 | 51.72 | 0.08 | 12 | 49.93 | 0.07 | 12 | 46.39 | 3.41 | |||
Funaben T | 4 | 0.00 | 0.00 | 4 | 0.00 | 0.00 | 4 | 0.00 | 0.00 |
Monoterpenes | Monoterpenoids | Sesquiterpenes | Sesquiterpenoids | Other Chemical Compounds |
---|---|---|---|---|
0.41 | −0.64 | −0.03 | 0.47 | 0.66 |
b1 | SE of b1 | b | SE of b | t (1754) | p | |
---|---|---|---|---|---|---|
Intercept | 736.24 | 73.69 | 9.99 | 0.00 * | ||
Monoterpenes | −5.42 | 0.56 | −6.87 | 0.71 | −9.62 | 0.00 * |
Monoterpenoids | −8.49 | 0.85 | −7.55 | 0.76 | −9.94 | 0.00 * |
Sesquiterpenes | −1.46 | 0.13 | −6.65 | 0.59 | −11.09 | 0.00 * |
Sesquiterpenoids | 0.02 | 0.06 | 0.45 | 1.19 | 0.38 | 0.70 |
Other chemical compounds | −4.24 | 0.45 | −7.08 | 0.76 | −9.32 | 0.00 * |
Concentration | −0.21 | 0.016 | −6.21 | 0.46 | −13.40 | 0.00 * |
Compound | RI | Etheric Oils | |||||||
---|---|---|---|---|---|---|---|---|---|
Lit * | Cal * | T | L | LC | V | TTO | C | G | |
Monoterpenes | |||||||||
Tricyclene | 923 | 920 | 0.17 ± 0.01 | 0.44 ± 0.08 | 0 | 0 | |||
α-thujene | 928 | 928 | 0.44 ± 0.05 | 0.83 ± 0.07 | |||||
α-pinene | 936 | 933 | 2.75 ± 0.09 | 0.49 ± 0.11 | 2.86 ± 0.16 | 0 | 3.42 ± 0.06 | 5.37 ± 0.01 | 3.27 ± 0.01 |
Camphene | 950 | 947 | 1.93 ± 0.07 | 3.71 ± 0.06 | 0.58 ± 0.04 | 0.80 ± 0.02 | 0 | ||
β-pinene | 978 | 974 | 0.65 ± 0.02 | 0 | 3.95 ± 0.08 | 1.08 ± 0.05 | 0.81 ± 0.02 | 3.93 ± 0.15 | |
β-myrcene | 989 | 991 | 2.44 ± 0.03 | 0.38 ± 0.11 | 3.01 ± 0.07 | 5.32 ± 0.01 | |||
α-phellandrene | 1004 | 1002 | 0.87 ± 0.03 | 0.05 ± 0.02 | 0.15 ± 0.08 | ||||
Sabinene (4,10-thujene) | 1004 | 1009 | 0.27 ± 0.04 | 0.17 ± 0.03 | 1.56 ± 0.03 | ||||
3-carene | 1011 | 1005 | 17.04 ± 0.15 | ||||||
α-terpinene | 1017 | 1018 | 2.32 ± 0.10 | 10.29 ± 0.09 | |||||
p-cymene | 1024 | 1020 | 3.62 ± 0.03 | ||||||
Limonene | 1029 | 1026 | 15.15 ± 0.18 | 20.94 ± 0.13 | 34.63 ± 0.73 | ||||
γ-terpinene | 1060 | 1061 | 8.10 ± 0.07 | 2.02 ± 0.07 | 0.37 ± 0.04 | 0.78 ± 0.01 | |||
Terpinolene | 1087 | 1087 | 0.45 ± 0.01 | 3.87 ± 0.05 | 0.27 ± 0.02 | 0.08 ± 0.01 | |||
β-patchulene | 1457 | 1455 | 0.16 ± 0.04 | ||||||
Sum monoterpenes | 34.38 | 4.64 | 28.33 | 8.73 | 37.12 | 12.95 | 45.64 | ||
Monoterpenoids | |||||||||
α and β citral (geranial and neral) | - | - | 68.94 ± 0.10 | 61.72 ± 0.43 | 36.00 ± 0.08 | ||||
Trifluorolavandulol | 1999 | 2.19 ± 0.07 | |||||||
Eucalyptol | 1031 | 1027 | 13.46 ± 0.17 | 13.90 ± 0.15 | 18.50 ± 0.05 | ||||
Linalool oxide | 1065 | 1064 | 0.12 ± 0.03 | ||||||
Linalool | 1099 | 1105 | 8.90 ± 0.18 | 5.73 ± 0.22 | 2.58 ± 0.04 | 8.53 ± 0.01 | 11.19 ± 0.17 | 4.83 ± 0.039 | |
1-terpineol | 1137 | 1135 | 1.19 ± 0.05 | 1.39 ± 0.06 | 0.47 ± 0.01 | 0.87 ± 0.10 | |||
p-menth-3-en-9-ol | 1141 | 1140 | 0.71 ± 0.02 | ||||||
Camphor | 1143 | 1141 | 4.62 ± 0.03 | ||||||
Verbenol | 1145 | 1145 | 0.18 ± 0.014 | ||||||
β-citronellal | 1154 | 1152 | 1.87 ± 0.13 | 0.42 ± 0.0.03 | |||||
Borneol | 1166 | 1168 | 3.07 ± 0.09 | 2.93 ± 0.07 | 1.32 ± 0.02 | ||||
1-terpinen-4-ol | 1177 | 1181 | 4.51 ± 0.05 | 38.24 ± 0.38 | 4.41 ± 0.35 | 0.09 ± 0.003 | |||
α-terpineol | 1190 | 1197 | 1.14 ± 0.09 | 1.02 ± 0.06 | 18.26 ± 150 | 6.88 ± 0.04 | 36.57 ± 0.21 | 1.83 ± 0.048 | |
α-pinene oxide | 1197 | 1195 | 0.51 ± 0.029 | ||||||
cis-geraniol | 1238 | 1234 | 0.55 ± 0.046 | ||||||
β citral (neral) | 1242 | 1231 | 0.92 ± 0.058 | ||||||
trans-geraniol | 1255 | 1252 | 0.45 ± 0.04 | ||||||
Linalyl acetate | 1255 | 1260 | 0.93 ± 0.06 | 1.87 ± 0.028 | |||||
Geranial | 1270 | 1269 | 1.36 ± 0.022 | ||||||
Thymol | 1290 | 1298 | 45.75 ± 0.18 | ||||||
α-terpinyl acetate | 1347 | 0.23 ± 0.021 | |||||||
Nerol acetate | 1363 | 1366 | 1.68 ± 0.01 | ||||||
Geraniol acetate | 1380 | 1385 | 2.26 ± 0.045 | ||||||
Sum momoterpenoids | 60.98 | 79.99 | 68.58 | 87.18 | 59.02 | 71.66 | 17.69 | ||
Sesquiterpenes | |||||||||
α-cubebene | 1351 | 1350 | 0.52 ± 0.04 | 0.37 ± 0.004 | |||||
α-longipinene | 1352 | 1350 | 0.67 ± 0.08 | ||||||
ylangene | 1370 | 1370 | 0.51 ± 0.01 | ||||||
β-cubebene | 1387 | 1390 | 0.49 ± 0.028 | ||||||
β-elemene | 1388 | 1387 | 0.14 ± 0.05 | ||||||
Longifolene | 1407 | 1408 | 1.12 ± 0.02 | ||||||
α-gurjunene | 1409 | 1410 | 0.23 ± 0.02 | 1.19 ± 0.09 | |||||
caryophyllene | 1419 | 1423 | 4.31 ± 0.02 | 3.76 ± 0.012 | 2.45 ± 0.018 | 0.55 ± 0.06 | 0.28 ± 0.003 | 2.60 ± 0.19 | 0.98 ± 0.061 |
α-caryophyllene | 1420 | 1408 | 0.33 ± 0.03 | 0.45 ± 0.01 | 0.20 ± 0.004 | 1.70 ± 0.03 | 0.14 ± 0.014 | ||
β-gurjunene | 1431 | 1430 | 1.15 ± 0.05 | 1.23 ± 0.05 | 0.57 ± 0.03 | ||||
(+)aromadendrene | 1441 | 1440 | 0.94 ± 0.10 | ||||||
γ-elemene | 1449 | 1445 | 0.05 ± 0.01 | ||||||
Allo-aromadendrene | 1460 | 1458 | 0.23 ± 0.03 | 3.63 ± 0.06 | |||||
γ-muurolene | 1476 | 1478 | 0.12 ± 0.06 | ||||||
Germacene D | 1481 | 1496 | 0 | 0.18 ± 0.01 | |||||
(+)-valencene | 1491 | 1499 | 0 | 0.14 ± 0.09 | |||||
β-selinene | 1493 | 1490 | 1.62 ± 0.03 | ||||||
γ-cadinene | 1513 | 1517 | 4.83 ± 0.10 | ||||||
σ-cadinene | 1523 | 1526 | 0.83 ± 0.04 | 0.48 ± 0.009 | |||||
Cadinene | 1533 | 1530 | 0.37 ± 0.05 | ||||||
Sum sesquiterpenes | 4.64 | 10.86 | 2.65 | 1.67 | 3.86 | 12.90 | 2.83 | ||
Sesquiterpenoids | |||||||||
trans-nerolidol | 1524 | 1522 | 0.02 ± 0.006 | ||||||
elemol | 1536 | 1540 | 0.05 ± 0.01 | ||||||
Caryophyllene oxide | 1581 | 1572 | 1.14 ± 0.03 | 0.44 ± 0.05 | 0.42 ± 0.08 | 0.23 ± 0.003 | |||
Guaiol | 1589 | 1590 | 0.55 ± 0.05 | ||||||
Eudesmol | 1616 | 1611 | 1.52 ± 0.03 | ||||||
Farnesol | 1722 | 1718 | 0.05 ± 0.011 | ||||||
Nootkatone | 1813 | 1818 | 1.37 ± 0.069 | ||||||
Farnesyl acetate | 1818 | 1820 | 0.03 ± 0.002 | ||||||
Sum sesquiterpenoids | 1.14 | 0.44 | 2.49 | 1.75 | |||||
Sum other chemical compounds | 3.37 | 26.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyśko-Łupicka, T.; Sokół, S.; Sporek, M.; Piekarska-Stachowiak, A.; Walkowiak-Lubczyk, W.; Sudoł, A. Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe. Molecules 2021, 26, 6488. https://doi.org/10.3390/molecules26216488
Krzyśko-Łupicka T, Sokół S, Sporek M, Piekarska-Stachowiak A, Walkowiak-Lubczyk W, Sudoł A. Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe. Molecules. 2021; 26(21):6488. https://doi.org/10.3390/molecules26216488
Chicago/Turabian StyleKrzyśko-Łupicka, Teresa, Sławomir Sokół, Monika Sporek, Anna Piekarska-Stachowiak, Weronika Walkowiak-Lubczyk, and Adam Sudoł. 2021. "Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe" Molecules 26, no. 21: 6488. https://doi.org/10.3390/molecules26216488
APA StyleKrzyśko-Łupicka, T., Sokół, S., Sporek, M., Piekarska-Stachowiak, A., Walkowiak-Lubczyk, W., & Sudoł, A. (2021). Effectiveness of the Influence of Selected Essential Oils on the Growth of Parasitic Fusarium Isolated from Wheat Kernels from Central Europe. Molecules, 26(21), 6488. https://doi.org/10.3390/molecules26216488