Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Cell Cultures and Treatment
2.3. Cell Viability Assay and Morphology Examination
2.4. LDH Cytotoxicity Assay
2.5. TUNEL Staining
2.6. Apoptosis Assay
2.7. Measurement of ROS Levels
2.8. Determination of the Oxidative Stress Index
2.9. Measurement of Mitochondrial Membrane Potential (Δψm)
2.10. Cell Cycle Assay
2.11. Western Blot Analysis
2.12. Co-Immunoprecipitation (Co-IP) Assay
2.13. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
2.14. Statistical Analysis
3. Results
3.1. Catalpol Inhibited H2O2-Induced Cytotoxicity in ARPE-19 Cells
3.2. Catalpol Inhibited H2O2-Induced ARPE-19 Cell Apoptosis
3.3. Effect of Catalpol on H2O2-Induced Cell Cycle Arrest in ARPE-19 Cells
3.4. Effect of Catalpol on the Modulation of Apoptosis-Related Proteins in H2O2-Treated ARPE-19 Cells
3.5. Catalpol Suppressed H2O2-Induced Oxidative Stress Activation in ARPE-19 Cells
3.6. Catalpol Activated Keap1/Nrf2/ARE Pathway in ARPE Cells under Oxidative Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fritsche, L.G.; Fariss, R.N.; Stambolian, D.; Abecasis, G.R.; Curcio, C.A.; Swaroop, A. Age-related macular degeneration: Genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 2014, 15, 151–171. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.; Chou, C.F.; Klein, B.E.; Zhang, X.; Meuer, S.M.; Saaddine, J.B. Prevalence of age-related macular degeneration in the US population. Arch. Ophthalmol. 2011, 129, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Zuo, C.; Wen, F.; Li, M. COL1A2 polymorphic markers confer an increased risk of neovascular age-related macular degeneration in a Han Chinese population. Mol. Vis. 2012, 18, 1787–1793. [Google Scholar]
- Park, U.C.; Shin, J.Y.; Mccarthy, L.C. Pharmacogenetic associations with long-term response to anti-vascular endothelial growth factor treatment in neovascular AMD patients. Mol. Vis. 2014, 20, 1680–1694. [Google Scholar] [PubMed]
- Chew, E.Y.; Clemons, T.; Sangiovanni, J.P. The Age-related Eye Disease Study 2 (AREDS2), Study Design and Baseline Characteristics (AREDS2 Report Number 1). Ophthalmology 2012, 119, 2282–2289. [Google Scholar] [CrossRef] [Green Version]
- Chiras, D.; Kitsos, G.; Petersen, M.B. Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit. Rev. Clin. Lab. Sci. 2015, 521, 12–27. [Google Scholar] [CrossRef]
- Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev. 2004, 85, 845–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarrett, S.G.; Lin, H.; Godley, B.F.; Boulton, M.E. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog. Retin. Eye Res. 2008, 27, 596–607. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasiak, J.; Glowacki, S.; Kauppinen, A. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2013, 142, 2996–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.; Fang, Y.; Xie, P. Protective effects of α-Mangostin on injury of human retinal pigment epithelium cells induced by hydrogen peroxide. Int. Eye Ence 2015, 15, 959–962. [Google Scholar]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagami, Y. Nrf2 is an attractive therapeutic target for retinal diseases. Oxidative Med. Cell. Longev. 2016, 2016, 7469326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, K.; Tuzcu, M.; Sahin, N. Nrf2/HO-1 signaling pathway may be the prime target for chemoprevention of cisplatin-induced nephrotoxicity by lycopene. Food Chem. Toxicol. 2010, 48, 2670–2674. [Google Scholar] [CrossRef] [PubMed]
- Keum, Y.S.; Han, Y.H.; Liew, C. Induction of Heme Oxygenase-1 (HO-1) and NAD[P]H: Quinone Oxidoreductase 1 (NQO1) by a Phenolic Antioxidant, Butylated Hydroxyanisole (BHA) and Its Metabolite, tert-Butylhydroquinone (tBHQ) in Primary-Cultured Human and Rat Hepatocytes. Pharm. Res. 2006, 23, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhu, X.B.; Hu, Y.Q.; Li, T.; Gao, Y.; Shi, Y.; Tang, S.B. Mitochondrial dna oxidative damage triggering mitochondrial dysfunction and apoptosis in high glucose-induced HRECs. Investig. Opthalmol. Vis. Sci. 2008, 49, 4203–4209. [Google Scholar] [CrossRef]
- Khan, S.; Zafar, A.; Naseem, I. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention. Chem. Biol. Interact. 2018, 290, 64–76. [Google Scholar] [CrossRef]
- Vu, K.T.; Hulleman, J.D. An inducible form of NRF2 confers enhanced protection against acute oxidative stresses in RPE cells. Exp. Eye Res. 2017, 164, 31–36. [Google Scholar] [CrossRef]
- Yan, J.T.; Wang, C.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Sun, H. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacol. Res. 2018, 4, 130. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Gao, J. Clinical trial of compound anisodine injection combined with Qiju Dihuang pill in the treatment of senile macular degeneration. Chin. J. Clin. Pharmacol. 2016, 32, 2059–2062. [Google Scholar]
- Xiong, Y.J.; Shi, L.Q.; Wang, L.; Zhou, Z.J.; Wang, C.O.; Lin, Y.; Luo, D.; Qiu, J.J.; Chen, D.P. Activation of sirtuin 1 by catalpol-induced down-regulation of microRNA-132 attenuates endoplasmic reticulum stress in colitis. Pharmacol. Res. 2017, 123, 31–36. [Google Scholar] [CrossRef]
- Zheng, X.W.; Yang, W.T.; Chen, S.; Xu, Q.Q.; Shan, C.S.; Zheng, G.Q.; Ruan, J.C. Neuroprotection of Catalpol for Experimental Acute Focal Ischemic Stroke: Preclinical Evidence and Possible Mechanisms of Antioxidation, Anti-Inflammation, and Antiapoptosis. Oxidative Med. Cell. Longev. 2017, 2017, 5058609. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.A.; Sun, Y.K.; Zhang, H.S. Catalpol inhibits apoptosis in hydrogen peroxide-induced cardiac myocytes through a mitochondrial-dependent caspase pathway. Biosci. Rep. 2016, 36, e00348. [Google Scholar] [CrossRef] [Green Version]
- Binet, M.T.; Doyle, C.J.; Williamson, J.E. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 2014, 452, 91–100. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Hyejin, L.; Hua, L.; Minson, K. Isobavachalcone from Angelica keiskei Inhibits Adipogenesis and Prevents Lipid Accumulation. Int. J. Mol. Sci. 2018, 19, 1693. [Google Scholar]
- Kim, M.J.; Kwon, S.B.; Ham, S.H. H9 Inhibits Tumor Growth and Induces Apoptosis via Intrinsic and Extrinsic Signaling Pathway in Human Non-Small Cell Lung Cancer Xenografts. J. Microbiol. Biotechnol. 2015, 25, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Meng, X.; Jin, L. Icaritin induces apoptotic and autophagic cell death in human glioblastoma cells. Am. J. Transl. Res. 2016, 11, 4628–4643. [Google Scholar]
- Wu, M.; Gu, Z.; Xiao, J. Differential Expression of Apoptosis-Associated Proteins in Chondrocytes of the Mandibular Condyles of Rabbits with Anterior Disk Displacement. J. Craniomandib. Pract. 2008, 26, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Xia, Y.; Chen, T. Selective killing of gastric cancer cells by a small molecule targeting ROS-mediated ER stress activation. Mol. Carcinog. 2016, 55, 1073–1086. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.N.; Xiao, H.L.; Li, X.; Yang, J.J. Effect of Electroacupuncture Intervention on Levels of SOD, GSH, GSH-Px, MDA, and Apoptosis of Dopaminergic Neurons in Substantia Nigra in Rats with Parkinson’s Disease. Acupunct. Res. 2014, 39, 185–191. [Google Scholar]
- Sayed, A.A. Ferulsinaic Acid Modulates SOD, GSH, and Antioxidant Enzymes in Diabetic Kidney. Evid. Based Complement. Altern. Med. 2012, 2012, 580104. [Google Scholar] [CrossRef] [Green Version]
- Zang, Q.S.; Maass, D.L.; Wigginton, J.G. Burn serum causes a CD14-dependent mitochondrial damage in primary cardiomyocytes. AJP Heart Circ. Physiol. 2010, 298, 1951–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.; Choi, E.O.; Kim, G.Y. Protective Effect of Baicalein on Oxidative Stress-induced DNA Damage and Apoptosis in RT4-D6P2T Schwann Cells. Int. J. Med. Sci. 2019, 16, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Gu, J.; Li, C. Low-intensity pulsed ultrasound suppresses proliferation and promotes apoptosis via p38 MAPK signaling in rat visceral preadipocytes. Am. J. Transl. Res. 2018, 10, 948–956. [Google Scholar]
- Zhang, Y.; Guan, L.; Wang, X. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. Free Radic. Res. 2008, 424, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J. Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic. Biol. Med. 2007, 42, 926–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutheesophon, K.; Kobayashi, Y.; Takatoku, M.A. Histone Deacetylase Inhibitor Depsipeptide (FK228) Induces Apoptosis in Leukemic Cells by Facilitating Mitochondrial Translocation of Bax, Which Is Enhanced by the Proteasome Inhibitor Bortezomib. Acta Haematol. 2006, 115, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Kishi, H.; Nagata, T. Differential involvement of p38 MAP kinase pathway and Bax translocation in the mitochondria-mediated cell death in TCR- and dexamethasone-stimulated thymocytes. Eur. J. Immunol. 2015, 31, 2702–2708. [Google Scholar] [CrossRef]
- Yang, B.; Ye, D.; Wang, Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin. Ther. Targets 2013, 17, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Romeo, F. Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc. Res. 2000, 45, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology 2000, 7, 153–163. [Google Scholar] [CrossRef]
- Hutnik, C.; Kagan, D.; Liu, H. Efficacy of various antioxidants in the protection of the retinal pigment epithelium from oxidative stress. Clin. Ophthalmol. 2012, 6, 1471–1476. [Google Scholar] [CrossRef] [Green Version]
- Keum, Y.S. Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes. Biomol. Ther. 2012, 20, 144–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maines, M.D.; Panahian, N. The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv. Exp. Med. Biol. 2001, 502, 249–272. [Google Scholar]
- Liu, Z.; Zhang, F.; Zhao, L.; Zhang, X.; Li, Y.; Liu, L. Protective effect of pravastatin on myocardial ischemia reperfusion injury by regulation of the miR-93/Nrf2/ARE signal pathway. Drug Des. Dev. Ther. 2020, 14, 3853–3864. [Google Scholar] [CrossRef]
- Wiegand, H.; Boesch-Saadatmandi, C.; Regos, I.; Treutter, D.; Wolffram, S.; Rimbach, G. Effects of quercetin and catechin on hepatic glutathione-S transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), and antioxidant enzyme activity levels in rats. Nutr. Cancer 2009, 61, 717–722. [Google Scholar] [CrossRef]
- Bellezza, I.; Mierla, A.L.; Minelli, A. Nrf2 and NF-κB and their concerted modulation in cancer pathogenesis and progression. Cancers 2010, 2, 483–497. [Google Scholar] [CrossRef]
- Tkachev, V.O.; Menshchikova, E.B.; Zenkov, N.K. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry 2011, 76, 407–422. [Google Scholar] [CrossRef]
- Kan, X.; Liu, J.; Chen, Y.; Guo, W.; Xu, D.; Cheng, J.; Cao, Y.; Yang, Z.; Fu, S. Myricetin protects against H2O2-induced oxidative damage and apoptosis in bovine mammary epithelial cells. J. Cell. Physiol. 2020, 2020, 2684–2695. [Google Scholar]
- Zhou, J.; Xi, C.; Wang, W.; Fu, X.; Liang, J.Q.; Qiu, Y.; Jin, J.; Xu, J.; Huang, Z. Triptolide-induced oxidative stress involved with Nrf2 contribute to cardiomyocyte apoptosis through mitochondrial dependent pathways. Toxicol. Lett. 2014, 230, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.L.; Shen, W.Y.; Chen, Z.F.; Zhao, L.F.; Qin, Q.P.; Yu, Y.C.; Liang, H. Oxoaporphine Metal Complexes (CoII, NiII, ZnII) with High Antitumor Activity by Inducing Mitochondria-Mediated Apoptosis and S-phase Arrest in HepG2. Sci. Rep. 2017, 7, 46056. [Google Scholar] [CrossRef] [Green Version]
- Zińczuk, J.; Zaręba, K.; Guzińska-Ustymowicz, K.; Kędra, B.; Kemona, A.; Pryczynicz, A. p16, p21, and p53 proteins play an important role in development of pancreatic intraepithelial neoplastic. Ir. J. Med. Sci. 2018, 187, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlando, S.; Gallastegui, E.; Besson, A.; Abril, G.; Aligué, R.; Pujol, M.J.; Bachs, O. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin–Cdk complexes on the promoters of target genes. Nucleic Acids Res. 2015, 43, 6860–6873. [Google Scholar] [CrossRef] [Green Version]
- Artur, B.; Dorota, W.; Jakub, R.; Zuzanna, R. Ciprofloxacin triggers the apoptosis of human triple-negative breast cancer MDA-MB-231 cells via the p53/Bax/Bcl-2 signaling pathway. Int. J. Oncol. 2018, 52, 1727–1737. [Google Scholar]
- Lua, R.; Gu, Y.; Si, D.Y.; Liu, C.X. Quantitation of catalpol in rat plasma by liquid chromatography/electrospray ionization tandem mass spectrometry and its pharmacokinetic study. J. Chromatogr. B 2009, 877, 3589–3594. [Google Scholar] [CrossRef]
- Wu, L.N.; Lu, R.; Gu, Y.; Liu, C.X. Pharmacokinetics and bioavalibability of catalpol in rats. Chin. J. Clin. Pharmacol. Ther. 2012, 17, 126–130. [Google Scholar]
- Wu, Z.; Du, Q. Effects and mechanism of catalpol on retinopathy in mice with diabetes mellitus. China Medical Herald. 2021, 18, 17–21. [Google Scholar] [CrossRef]
Antibodies | Company | Catalogue Number | Concentration |
---|---|---|---|
Fas | Abcam | ab82419 | 1:1000 |
cytochrome c | Abcam | ab90529 | 1:1000 |
cleaved caspase 3 | Abcam | ab2302 | 1:1000 |
cleaved caspase 9 | Abcam | ab2324 | 1:1000 |
NQO1 | Abcam | ab80588 | 1:1000 |
p53 | Abcam | ab241556 | 1:1000 |
Keap1 | Abcam | ab118285 | 1:1000 |
Bcl-2 | Abcam | ab185002 | 1:1000 |
Nrf2 | Abcam | ab62352 | 1:1000 |
CDK2 | Abcam | ab32147 | 1:1000 |
cyclin A | Abcam | ab33911 | 1:1000 |
cyclin E | Abcam | ab181591 | 1:1000 |
Bax | Abcam | ab53154 | 1:1000 |
β-actin | Abcam | ab8226 | 1:1000 |
p21 | Abcam | ab188224 | 1:1000 |
Histone H3 | Abcam | ab1791 | 1:1000 |
COX IV | Abcam | ab16056 | 1:1000 |
phospho-p53 (Ser15) | Cell Signaling Technology | #9286S | 1:1000 |
cleaved PARP | Cell Signaling Technology | #5625S | 1:1000 |
HO-1 | Cell Signaling Technology | #86806S | 1:1000 |
cleaved caspase 8 | Cell Signaling Technology | #9496S | 1:1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, L.; Peng, H.; Liu, J.; Cai, M.; Wu, H.; Zhang, Z.; Bai, J.; Yao, Y.; Dong, X.; Yin, X.; et al. Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway. Cells 2021, 10, 2635. https://doi.org/10.3390/cells10102635
You L, Peng H, Liu J, Cai M, Wu H, Zhang Z, Bai J, Yao Y, Dong X, Yin X, et al. Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway. Cells. 2021; 10(10):2635. https://doi.org/10.3390/cells10102635
Chicago/Turabian StyleYou, Longtai, Hulinyue Peng, Jing Liu, Mengru Cai, Huimin Wu, Zhiqin Zhang, Jie Bai, Yu Yao, Xiaoxv Dong, Xingbin Yin, and et al. 2021. "Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway" Cells 10, no. 10: 2635. https://doi.org/10.3390/cells10102635
APA StyleYou, L., Peng, H., Liu, J., Cai, M., Wu, H., Zhang, Z., Bai, J., Yao, Y., Dong, X., Yin, X., & Ni, J. (2021). Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway. Cells, 10(10), 2635. https://doi.org/10.3390/cells10102635