Comparative Analysis of Runoff and Evaporation Assessment Methods to Evaluate Wetland–Groundwater Interaction in Mediterranean Evaporitic-Karst Aquatic Ecosystem
Abstract
:1. Introduction
2. Geological and Hydrological Settings
3. Methods
4. Results
5. Discussion
5.1. Choosing the Runoff and Evaporation Equations for the Limnimetric Simulation
5.2. Integrating the Results into a Hydrogeological Conceptual Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9788578110796. [Google Scholar]
- National Research Council. Wetlands: Characteristics and Boundaries; National Academy Press: Washington, DC, USA, 1995; ISBN 0309051347.
- Millenium Ecosystem Assessment. Ecosystems and Humanwell-Being: Wetlands and Water Syntesys; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- LePage, B.A. Wetlands; LePage, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; ISBN 9789400705500. [Google Scholar]
- Jolly, I.D.; McEwan, K.L.; Holland, K.L. A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 2008, 1, 43–52. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Winter, T.C. Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. J. Hydrol. 1997, 191, 266–289. [Google Scholar] [CrossRef]
- Winter, T.C.; Rosenberry, D.O.; Labaugh, J.W. Where Does the Ground Water in Small Watersheds Come From? GroundWater 2003, 41, 989–1000. [Google Scholar] [CrossRef]
- House, A.R.; Thompson, J.R.; Acreman, M.C. Projecting impacts of climate change on hydrological conditions and biotic responses in a chalk valley riparian wetland. J. Hydrol. 2016, 534, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.; Jawitz, J.W. Wetland Water Budgets. In Methods in Biogeochemistry of Wetlands; DeLaune, R.D., Reddy, K.R., Richardson, C.J., Megonigal, J.P., Eds.; SSSA: Madison, WI, USA, 2013; pp. 919–936. [Google Scholar]
- Rosenberry, D.O.; Hayashi, M. Assesing and measuring wetland hydrology. In Wetland Techniques. Vol. 1: Foundations; Anderson, J.T., Davis, C.A., Eds.; Springer Sciences Business Media: Dordrecht, The Netherlands, 2013; pp. 87–225. [Google Scholar]
- Walton, R.; Chapman, R.S.; Davis, J.E. Development and application of the wetlands dynamic water budget model. Wetlands 1996, 16, 347–357. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, M.; Fernández, A.; Moral, F. Hydrological regime and modeling of three ponds of the Mediterranean area (south of Córdoba, Spain). Hydrobiologia 2016, 782, 155–168. [Google Scholar] [CrossRef]
- Rimmer, A.; Gal, G. Estimating the saline springs component in the solute and water balance of Lake Kinneret, Israel. J. Hydrol. 2003, 284, 228–243. [Google Scholar] [CrossRef]
- O′Driscoll, M.A.; Parizek, R.R. The hydrologic catchment area of a chain of karst wetlands in central Pennsylavania, USA. Wetlands 2003, 23, 171–179. [Google Scholar] [CrossRef]
- Min, J.H.; Perkins, D.B.; Jawitz, J.W. Wetland-groundwater interactions in subtropical depressional wetlands. Wetlands 2010, 30, 997–1006. [Google Scholar] [CrossRef]
- McKillop, R.; Kouwen, N.; Soulis, E.D. Modeling the rainfall-runoff response of a headwater wetland. Water Resour. Res. 1999, 35, 1165–1177. [Google Scholar] [CrossRef]
- Hood, J.L.; Roy, J.W.; Hayashi, M. Importance of groundwater in the water balance of an alpine headwater lake. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, C.; García-Vera, M.Á. Water balance in the playa-lakes of an arid environment, Monegros, NE Spain. Hydrogeol. J. 2008, 16, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, A.L.; Hession, W.C. Groundwater influence on water budget of a small constructed floodplain wetland in the Ridge and Valley of Virginia, USA. J. Hydrol. Reg. Stud. 2015, 4, 699–712. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Van Der Kamp, G. Simple equations to represent the volume-area-depth relations of shallow wetlands in small topographic depressions. J. Hydrol. 2000, 237, 74–85. [Google Scholar] [CrossRef]
- Los Huertos, M.; Smith, D. Wetland bathymetry and mapping. In Wetland Techniques. Vol. 1: Foundations; Anderson, J.T., Davis, C.A., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 49–86. [Google Scholar]
- Ray, A.M.; Sepulveda, A.J.; Irvine, K.M.; Wilmoth, S.K.C.; Thoma, D.P.; Patla, D.A. Wetland drying linked to variations in snowmelt runoff across Grand Teton and Yellowstone national parks. Sci. Total Environ. 2019, 666, 1188–1197. [Google Scholar] [CrossRef]
- Keijman, J.Q.; Koopmans, R.W.R. A comparison of several methods of estimating the evaporation of Lake Flevo. Int. Assoc. Hydrol. Sci. 1973, 109, 225–232. [Google Scholar]
- Rosenberry, D.O.; Winter, T.C.; Buso, D.C.; Likens, G.E. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. J. Hydrol. 2007, 340, 149–166. [Google Scholar] [CrossRef]
- Yao, H. Long-Term Study of Lake Evaporation and Evaluation of Seven Estimation Methods: Results from Dickie Lake, South-Central Ontario, Canada. J. Water Resour. Prot. 2009, 1, 59–77. [Google Scholar] [CrossRef] [Green Version]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, M.; Moral, F.; Benavente, J.; Beltrán, M. Developing hydrological indices in semi-arid playa-lakes by analyzing their main morphometric, climatic and hydrochemical characteristics. J. Arid Environ. 2010, 74, 1478–1486. [Google Scholar] [CrossRef]
- Vera, J.A.; Martín-Algarra, A. Cordillera Bética. In Geología de España; Vera, J.A., Ed.; IGME-SGE: Madrid, Spain, 2004; pp. 345–464. [Google Scholar]
- CHG. Definición del Contexto Hidrogeológico de Humedales de la Campiña Andaluza Central; Confederación Hidrográfica del Guadalquivir: Seville, Spain, 2008. [Google Scholar]
- CMA. Definición del Contexto Hidrogeológico de Humedales Andaluces; Conserjería de Medio Ambiente de la Junta de Andalucía: Málaga, Spain, 2005. [Google Scholar]
- Aljibe-Consultores. Estudio Hidrogeológico de las Lagunas del sur de Córdoba: Lagunas de Rincón y Santiago, Lagunas Amarga y Dulce; Junta de Andalucía: Córdoba, Spain, 2005. [Google Scholar]
- Moral, F.; Rodríguez-Rodríguez, M.; Beltrán, M.; Benavente, J.; Cifuentes, V.J. Water Regime of Playa Lakes from Southern Spain: Conditioning Factors and Hydrological Modeling. Water Environ. Res. 2013, 85, 632–642. [Google Scholar] [CrossRef]
- Martín-Serrano, A. Mapa Geológico de la Hoja no 1006 (Benamejí). Mapa Geológico de España, E. 1:50.000. Segunda Serie (MAGNA), Primera Edición; IGME: Madrid, Spain, 1986. [Google Scholar]
- Gil-Márquez, J.M.; Andreo, B.; Mudarra, M. Combining hydrodynamics, hydrochemistry, and environmental isotopes to understand the hydrogeological functioning of evaporite-karst springs. An example from southern Spain. J. Hydrol. 2019, 576, 299–314. [Google Scholar] [CrossRef]
- Gil-Márquez, J.M. Caracterización Hidrogeológica de Humedales y Manantiales Salinos Asociados a Acuíferos Kársticos Evaporíticos del Sector Central del Subbético; Universidad de Granada: Granada, Spain, 2018. [Google Scholar]
- Gil-Márquez, J.M.; Barberá, J.A.; Mudarra, M.; Andreo, B.; Prieto-Mera, J.; Sánchez, D.; Rizo-Decelis, L.D.; Argamasilla, M.; Nieto, J.M.; De la Torre, B. Karst development of an evaporitic system and its hydrogeological implications inferred from GIS-based analysis and tracing techniques. Int. J. Speleol. 2017, 46, 219–235. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area Virginia and Tennessee (Proj. NR 389-402, Technical Report 3); Columbia University: New York, NY, USA, 1953. [Google Scholar]
- Schumm, S.A. Geological Society of America Bulletin Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Trans. Am. Geophys. Union 1932, 13, 350. [Google Scholar] [CrossRef]
- IGN Plan Nacional de Ortofotografía Aerea. Available online: https://pnoa.ign.es/el-proyecto-pnoa-lidar (accessed on 1 March 2021).
- García-Ferrer, A.; Recio Espejo, J.M.; Sánchez de la Orden, M. Medidas morfométricas y batimétricas de las lagunas Amarga y del Rincón (Córdoba). Boletín la Estac. Cent. Ecol. 1983, 12, 51–55. [Google Scholar]
- Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V. Model estimation of land-use effects on water levels of northern prairie wetlands. Ecol. Appl. 2007, 17, 527–540. [Google Scholar] [CrossRef]
- Gurrieri, J.T.; Furniss, G. Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods. J. Hydrol. 2004, 297, 187–208. [Google Scholar] [CrossRef]
- Krasnostein, A.L.; Oldham, C.E. Predicting wetland water storage. Water Resour. Res. 2004, 40, 1–12. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Mockus, V. Estimation of direct runoff from storm rainfall. In SCS, National Engineering Handbook; USDA Soil Conservation Services: Washington DC, USA, 1964; p. 30. [Google Scholar]
- Públicas, M.d.O. Cálculo Hidrometeorológico de Caudales Máximos en Pequeñas Cuencas Naturales; Ministerio de Obras Públicas: Madrid, Spain, 1987. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. The water balance. Publ. Climatol. 1955, 8, 86. [Google Scholar]
- Thornthwaite, C.W. An approach toward rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Blaney, H.F.; Criddle, W.D. Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data. Technical Report-96; USDA: Washington, DC, USA, 1950. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 1948, 193, 120–145. [Google Scholar]
- Souch, C.; Grimmond, C.S.B.; Wolfe, C.P. Evapotranspiration rates from wetlands with different disturbance histories: Indiana Dunes National Lakeshore. Wetlands 1998, 18, 216–229. [Google Scholar] [CrossRef]
- Finch, J.W. A comparison between measured and modelled open water evaporation from a reservoir in south-east England. Hydrol. Process. 2001, 15, 2771–2778. [Google Scholar] [CrossRef]
- Wossenu, A. Evaporation Estimation for Lake Okeechobee in South Florida. J. Irrig. Drain. Eng. 2001, 127, 140–147. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Morin, R.H. Use of an Electromagnetic Seepage Meter to Investigate Temporal Variability in Lake Seepage. Ground Water 2004, 42, 68–77. [Google Scholar] [CrossRef]
- Kohler, M.A.; Parmele, L.H. Generalized estimates of free-water evaporation. Water Resour. Res. 1967, 3, 997–1005. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 1981, 107, 1–27. [Google Scholar] [CrossRef]
- Morton, F.I. Practical estimates of lake evaporation. J. Clim. Appl. Meteorol. 1986, 25, 371–387. [Google Scholar] [CrossRef]
- Fennessey, N.M. Estimating average monthly lake evaporation in tile northeast united states. J. Am. Water Resour. Assoc. 2000, 36, 759–769. [Google Scholar] [CrossRef]
- McJannet, D.L.; Webster, I.T.; Stenson, M.P.; Sherman, B.S. Estimating Open Water Evaporation for the Murray-Darling Basin: A Report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project; CSIRO: Canbera, Australia, 2008; Volume 50. [Google Scholar]
- Vardavas, I.M.; Fountoulakis, A. Estimation of lake evaporation from standard meteorological measurements: Application to four Australian lakes in different climatic regions. Ecol. Modell. 1996, 84, 139–150. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Finch, J.; Calver, A. Methods for the Quantification of Evaporation from Lakes. Available online: http://nora.nerc.ac.uk/id/eprint/14359/1/wmoevap_271008.pdf (accessed on 1 March 2021).
- Andreo, B.; Gil-Márquez, J.M.; Mudarra, M.; Linares, L.; Carrasco, F. Hypothesis on the hydrogeological context of wetland areas and springs related to evaporitic karst aquifers (Málaga, Córdoba and Jaén provinces, Southern Spain). Environ. Earth Sci. 2016, 75, 1–19. [Google Scholar] [CrossRef]
- Doss, P.K. The nature of a dynamic water table in a system of non-tidal, freshwater coastal wetlands. J. Hydrol. 1993, 141, 107–126. [Google Scholar] [CrossRef]
- Moya, J.L. Hidrología de las Zonas Húmedas del sur de la Provincia de Córdoba; Universidad de Córdoba: Córdoba, Spain, 1988. [Google Scholar]
- Gil-Márquez, J.M.; Sültenfuß, J.; Andreo, B.; Mudarra, M. Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings. J. Hydrol. 2020, 580, 124263. [Google Scholar] [CrossRef]
- Valiente, N.; Gil-Márquez, J.M.; Gómez-Alday, J.J.; Andreo, B. Unraveling groundwater functioning and nitrate attenuation in evaporitic karst systems from southern Spain: An isotopic approach. Appl. Geochem. 2020, 123, 104820. [Google Scholar] [CrossRef]
- Cameron, C.R.; Hancock, M.C.; Carr, D.W.; Hurst, M.K.; Campbell, D.E.; Venning, T.J.; Tara, P.D.; Holzwart, K.R. Hydroperiods of Cypress Domes in West-Central Florida, USA. Wetlands 2020, 40, 2225–2234. [Google Scholar] [CrossRef]
- Montgomery, J.S.; Hopkinson, C.; Brisco, B.; Patterson, S.; Rood, S.B. Wetland hydroperiod classification in the western prairies using multitemporal synthetic aperture radar. Hydrol. Process. 2018, 32, 1476–1490. [Google Scholar] [CrossRef]
- Hayashi, M.; van der Kamp, G.; Rosenberry, D.O. Hydrology of Prairie Wetlands: Understanding the Integrated Surface-Water and Groundwater Processes. Wetlands 2016, 36, 237–254. [Google Scholar] [CrossRef]
- Tóth, Á.; Havril, T.; Simon, S.; Galsa, A.; Monteiro Santos, F.A.; Müller, I.; Mádl-Szőnyi, J. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. J. Hydrol. 2016, 539, 330–344. [Google Scholar] [CrossRef]
- Manzano, M.; Custodio, E. Relationships between weltands and the Doñana coastal aquifer (SW Spain). In Groundwater and Ecosystems; IAH, Ed.; CRC Press: London, UK, 2013; pp. 169–182. ISBN 978-1-138-00033-9. [Google Scholar]
- Bryant, R.G.; Rainey, M.P. Investigation of flood inundation on playas within the Zone of Chotts, using a time-series of AVHRR. Remote Sens. Environ. 2002, 82, 360–375. [Google Scholar] [CrossRef]
- Brooks, R.T. Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States. Clim. Chang. 2009, 95, 469–483. [Google Scholar] [CrossRef]
- Ma, J.Z.; Ding, Z.; Gates, J.B.; Su, Y. Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China. Environ. Geol. 2008, 55, 1407–1419. [Google Scholar] [CrossRef] [Green Version]
- Su, M.; Stolte, W.J.; Van Der Kamp, G. Modelling Canadian prairie wetland hydrology using a semi-distributed streamflow model. Hydrol. Process. 2000, 14, 2405–2422. [Google Scholar] [CrossRef]
- Hayashi, M.; Rosenberry, D.O. Effects of Ground Water Exchange on the Hydrology and Ecology of Surface Water. Ground Water 2002, 40, 309–316. [Google Scholar] [CrossRef]
- Acreman, M. Wetlands and Hydrology; Crivelli, J.A., Albert, J., Eds.; Station Biologuique de la Tour du Valat: Arles, France, 2000; ISBN 2-910368-32-7. [Google Scholar]
- Euliss, N.H.; Labaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Laubhan, M.K.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D. the Wetland Continuum: A Conceptual Framework for Interpreting Biological Studies. Wetlands 2004, 24, 448–458. [Google Scholar] [CrossRef]
- Smith, A.J.; Townley, L.R. Influence of regional setting on the interaction between shallow lakes and aquifers. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Neff, B.P.; Rosenberry, D.O.; Leibowitz, S.G.; Mushet, D.M.; Golden, H.E.; Rains, M.C.; Brooks, J.R.; Lane, C.R. A Hydrologic Landscapes Perspective on Groundwater Connectivity of Depressional Wetlands. Water 2019, 12, 50. [Google Scholar] [CrossRef] [Green Version]
JARALES WETLAND | |||||||
---|---|---|---|---|---|---|---|
Shape | Slope | Height | |||||
Surface | 90.4 ha | Circularity Ratio (Rc) a | 0.33 | Maximum | 11.4% | Maximum | 464.5 m asl |
Perimeter | 5857 m | Elongation Ratio (Re) b | 0.62 | Average | 3.6% | Minimum | 406.6 m asl |
Maximum Length | 1736 m | Form Factor (Ff) c | 0.30 | Difference | 50.6 m | ||
AMARGA WETLAND | |||||||
Shape | Slope | Height | |||||
Surface | 256.9 ha | Circularity Ratio (Rc) a | 0.34 | Maximum | 30.2% | Maximum | 440.4 m asl |
Perimeter | 9730 m | Elongation Ratio (Re) b | 0.79 | Average | 3.8% | Minimum | 370.1 m asl |
Maximum Length | 2280 m | Form Factor (Ff) c | 0.49 | Difference | 70.3 m |
Month/Hydrol. Year | V0a | Pb | Rc | Ed | Simulated Vf e | Simulated ΔV f | Actual V f | Actual ΔV | ΔG g |
---|---|---|---|---|---|---|---|---|---|
Monthly water budget | |||||||||
May 2014 | 94.8 | 0.4 | 0.0 | 14.6 | 80.6 | −14.2 | 77.6 | −17.2 | −3.0 |
June 2014 | 77.6 | 0.7 | 0.0 | 14.5 | 63.8 | −13.8 | 61.2 | −16.3 | −2.5 |
July 2014 | 61.2 | 0.0 | 0.0 | 14.5 | 46.7 | −14.5 | 42.4 | −18.8 | −4.4 |
August 2014 | 42.4 | 0.0 | 0.0 | 11.2 | 31.2 | −11.2 | 27.0 | −15.4 | −4.2 |
September 2014 | 27.0 | 0.3 | 0.0 | 5.4 | 22.0 | −5.1 | 19.2 | −7.8 | −2.7 |
October 2014 | 19.2 | 2.5 | 1.1 | 3.5 | 19.3 | 0.1 | 14.4 | −4.8 | −4.9 |
November 2014 | 14.4 | 4.8 | 0.5 | 1.6 | 18.1 | 3.7 | 20.8 | 6.4 | 2.7 |
December 2014 | 20.8 | 0.8 | 0.0 | 1.2 | 20.4 | −0.5 | 19.8 | −1.0 | −0.6 |
January 2015 | 19.8 | 1.7 | 0.0 | 1.5 | 20.0 | 0.2 | 22.0 | 2.2 | 2.0 |
February 2015 | 22.0 | 1.2 | 0.0 | 2.1 | 21.1 | −0.9 | 22.4 | 0.4 | 1.4 |
March 2015 | 22.4 | 1.4 | 0.0 | 4.1 | 19.7 | −2.8 | 22.0 | −0.4 | 2.3 |
April 2015 | 22.0 | 1.2 | 0.0 | 5.5 | 17.6 | −4.4 | 18.2 | −3.8 | 0.6 |
May 2015 | 18.2 | 0.0 | 0.0 | 7.4 | 10.8 | −7.4 | 12.2 | −5.9 | 1.5 |
June 2015 | 12.2 | 0.0 | 0.0 | 6.8 | 5.5 | −6.8 | 1.0 | −11.2 | −4.4 |
July 2015 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | −1.0 | 0.0 | −1.0 | 0.0 |
August 2015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
September 2015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Annual water budget | |||||||||
2014/15 | 19.2 | 13.5 | 1.6 | 34.9 | 0 | −19.8 | 0 | −19.2 | 0.6 |
Month/Hydrol. Year | V0 a | Pb | Rc | Ed | Simulated Vf e | Simulated ΔV f | Actual V f | Actual ΔV | ΔG g |
---|---|---|---|---|---|---|---|---|---|
Monthly water budget | |||||||||
December 2014 | 187.98 | 1.10 | 0.00 | 2.40 | 186.69 | −1.30 | 187.13 | −0.85 | 0.45 |
January 2015 | 187.13 | 2.46 | 0.00 | 2.94 | 186.65 | −0.48 | 188.58 | 1.44 | 1.93 |
February 2015 | 188.58 | 1.61 | 0.00 | 2.60 | 187.59 | −0.99 | 188.62 | 0.04 | 1.03 |
March 2015 | 188.62 | 1.96 | 0.00 | 4.63 | 185.95 | −2.67 | 188.25 | −0.36 | 2.31 |
April 2015 | 188.25 | 1.69 | 0.00 | 6.69 | 183.26 | −5.00 | 187.57 | −0.68 | 4.31 |
May 2015 | 187.57 | 0.00 | 0.00 | 10.52 | 177.05 | −10.52 | 177.12 | −10.45 | 0.07 |
June 2015 | 177.12 | 0.02 | 0.00 | 12.01 | 165.14 | −11.99 | 163.27 | −13.85 | −1.86 |
July 2015 | 163.27 | 0.00 | 0.00 | 13.02 | 150.25 | −13.02 | 149.39 | −13.89 | −0.87 |
August 2015 | 149.39 | 0.05 | 0.00 | 10.42 | 139.02 | −10.36 | 138.19 | −11.20 | −0.83 |
September 2015 | 138.19 | 0.95 | 0.00 | 7.84 | 131.30 | −6.89 | 127.93 | −10.26 | −3.37 |
October 2015 | 127.93 | 3.33 | 0.00 | 4.67 | 126.59 | −1.34 | 127.83 | −0.10 | 1.24 |
November 2015 | 127.83 | 2.38 | 4.66 | 2.75 | 132.12 | 4.29 | 135.72 | 7.88 | 3.59 |
December 2015 | 135.72 | 0.13 | 0.00 | 2.75 | 133.10 | −2.62 | 133.78 | −1.94 | 0.68 |
January 2016 | 133.78 | 4.01 | 5.16 | 2.03 | 140.93 | 7.15 | 145.24 | 11.47 | 4.32 |
February 2016 | 145.24 | 2.10 | 0.00 | 2.83 | 144.52 | −0.72 | 146.04 | 0.80 | 1.52 |
March 2016 | 146.04 | 1.22 | 0.00 | 4.42 | 142.85 | −3.19 | 143.49 | −2.55 | 0.65 |
April 2016 | 143.49 | 2.85 | 2.67 | 4.82 | 144.19 | 0.69 | 145.13 | 1.64 | 0.94 |
May 2016 | 145.13 | 3.27 | 0.58 | 7.61 | 141.37 | −3.76 | 143.39 | −1.75 | 2.01 |
June 2016 | 143.39 | 0.00 | 0.00 | 10.97 | 132.42 | −10.97 | 131.76 | −11.63 | −0.67 |
July 2016 | 131.76 | 0.81 | 0.00 | 12.05 | 120.51 | −11.24 | 123.72 | −8.04 | 3.21 |
August 2016 | 123.72 | 0.02 | 0.00 | 11.67 | 112.07 | −11.65 | 112.98 | −10.74 | 0.91 |
September 2016 | 112.98 | 0.18 | 0.00 | 7.62 | 105.55 | −7.43 | 108.07 | −4.91 | 2.52 |
October 2016 | 108.07 | 1.59 | 0.00 | 5.15 | 104.52 | −3.55 | 109.59 | 1.52 | 5.08 |
November 2016 | 109.59 | 3.30 | 1.01 | 2.78 | 111.12 | 1.53 | 121.92 | 12.33 | 10.80 |
December 2016 | 121.92 | 2.39 | 0.13 | 2.24 | 122.19 | 0.27 | 128.82 | 6.90 | 6.63 |
January 2017 | 128.82 | 0.30 | 0.00 | 2.25 | 126.86 | −1.96 | 124.57 | −4.24 | −2.29 |
February 2017 | 124.57 | 2.04 | 0.00 | 2.09 | 124.52 | −0.06 | 127.04 | 2.46 | 2.52 |
March 2017 | 127.04 | 2.19 | 0.00 | 3.68 | 125.54 | −1.49 | 127.64 | 0.61 | 2.10 |
April 2017 | 127.64 | 1.07 | 0.00 | 6.19 | 122.52 | −5.12 | 122.34 | −5.31 | −0.18 |
May 2017 | 122.34 | 0.70 | 0.00 | 7.77 | 115.27 | −7.06 | 116.58 | −5.76 | 1.31 |
June 2017 | 116.58 | 0.00 | 0.00 | 10.22 | 106.36 | −10.22 | 105.72 | −10.86 | −0.64 |
July 2017 | 105.72 | 0.01 | 0.00 | 9.59 | 96.14 | −9.58 | 95.48 | −10.24 | −0.66 |
August 2017 | 95.48 | 1.42 | 1.14 | 8.11 | 89.93 | −5.55 | 96.20 | 0.71 | 6.27 |
September 2017 | 96.20 | 0.00 | 0.00 | 6.60 | 89.60 | −6.60 | 91.66 | −4.54 | 2.06 |
Annual water budget | |||||||||
2015/16 | 127.9 | 20.3 | 13.1 | 74.2 | 87.1 | −40.8 | 108.1 | −19.9 | 20.9 |
2016/17 | 108.1 | 15.0 | 2.3 | 66.7 | 58.7 | −49.4 | 91.7 | −16.4 | 33.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Márquez, J.M.; Andreo, B.; Mudarra, M. Comparative Analysis of Runoff and Evaporation Assessment Methods to Evaluate Wetland–Groundwater Interaction in Mediterranean Evaporitic-Karst Aquatic Ecosystem. Water 2021, 13, 1482. https://doi.org/10.3390/w13111482
Gil-Márquez JM, Andreo B, Mudarra M. Comparative Analysis of Runoff and Evaporation Assessment Methods to Evaluate Wetland–Groundwater Interaction in Mediterranean Evaporitic-Karst Aquatic Ecosystem. Water. 2021; 13(11):1482. https://doi.org/10.3390/w13111482
Chicago/Turabian StyleGil-Márquez, José Manuel, Bartolomé Andreo, and Matías Mudarra. 2021. "Comparative Analysis of Runoff and Evaporation Assessment Methods to Evaluate Wetland–Groundwater Interaction in Mediterranean Evaporitic-Karst Aquatic Ecosystem" Water 13, no. 11: 1482. https://doi.org/10.3390/w13111482
APA StyleGil-Márquez, J. M., Andreo, B., & Mudarra, M. (2021). Comparative Analysis of Runoff and Evaporation Assessment Methods to Evaluate Wetland–Groundwater Interaction in Mediterranean Evaporitic-Karst Aquatic Ecosystem. Water, 13(11), 1482. https://doi.org/10.3390/w13111482