# Entropy of Relativistic Mono-Atomic Gas and Temperature Relativistic Transformation in Thermodynamics

## Abstract

**:**

## Introduction

## Entropy of Ideal Gas and Temperature Relativistic Transformation

_{B}= 1 [14,15]), is a dimensionless value and has to be invariant relatively to the transformations of frames of reference [5]. We will demonstrate that actually situation is more complicated and even the entropy of mono-atomic ideal gas is not constant under PE transformations.

_{v}equals (3/2)R in a broad range of at temperatures, with a high accuracy, thus, actually for these gases i = 3 [16]. Hence it is clear that rotational degrees of freedom are not excited for monoatomic gases. The reason for this could not be explained in the realm of classical physics, but instead requires quantum mechanics arguments discussed below.

_{B}= 1). These temperature are unrealistically high for real gaseous systems, thus for monoatomic gases i =3 for both spherical and ellipsoidal particles, hence S turns out to be insensitive to the frames of reference transformations

**Figure 1.**Scheme illustrating entropy jump stipulated bythe change in the number of degrees of freedom.

## Acknowledgements

## References

- Ares de Parga, G.; López-Carrera, B.; Angulo-Brown, F. A proposal of relativistic transformations in thermodynamics. J. Phys. A: Math. Gen.
**2005**, 38, 2821–2834. [Google Scholar] [CrossRef] - Lavagno, A. Relativistic nonextensive thermodynamics. Physics Letters A
**2002**, 301, 13–18. [Google Scholar] [CrossRef] - Banach, Z. An extended Gibbs relation for the relativistic Boltzmann entropy: classical and quantum gases. Physica A
**2000**, 275, 405–428. [Google Scholar] [CrossRef] - Banach, Z.; Larecki, W. Decomposition of entropy and the choice of non-equilibrium variables for relativistic classical and quantum gases. Physica A
**2001**, 293, 485–507. [Google Scholar] [CrossRef] - Tolman, R.C. Relativity, Thermodynamics and Cosmology; Oxford University Press: Oxford, 1934. [Google Scholar]
- Ott, H. Z. f. Phys.
**1965**, 175, 70. [CrossRef] - Öttinger, H. C. Beyond Equilibrium Thermodynamics; Wiley & Sons: Hoboken, New York, 2005. [Google Scholar]
- Sieniutycz, S. Thermodynamic and relativistic aspects of thermal inertia in fluids. Physical Review E
**1998**, 58(6), 7027–7038. [Google Scholar] [CrossRef] - Landsberg, P.T.; Matsas, G.E.A. The impossibility of a universal relativistic temperature transformation. Physica A
**2004**, 340, 92–94. [Google Scholar] [CrossRef] - Landsberg, P.T.; Matsas, G.E.A. Laying the ghost of the relativistic temperature transformation. Physics Letters A
**1996**, 223, 401–403. [Google Scholar] [CrossRef] - Balescu, R. Relativistic statistical thermodynamics. Physica
**1968**, 40(3), 309–338. [Google Scholar] [CrossRef] - Landsberg, P. T. Does a moving body appear cool? Nature
**1967**, 214, 903–904. [Google Scholar] [CrossRef] - Arias-Hernández, L.A.; Angulo-Brown, F. A general property of endreversible thermal engines. J. Appl. Phys.
**1997**, 81, 2973–2979. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Statistical Physics; Butterworth-Heinemann: Oxford, 2000. [Google Scholar]
- Kittel, C. Elementary Statistical Physics; John Wiley & Sons: New York, 1960. [Google Scholar]
- Pohl, R. W. Mechanic, Akustik and Wärmelehre; Springer: Berlin, Göttingen, 1964. [Google Scholar]

© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

## Share and Cite

**MDPI and ACS Style**

Bormashenko, E.
Entropy of Relativistic Mono-Atomic Gas and Temperature Relativistic Transformation in Thermodynamics. *Entropy* **2007**, *9*, 113-117.
https://doi.org/10.3390/e9030113

**AMA Style**

Bormashenko E.
Entropy of Relativistic Mono-Atomic Gas and Temperature Relativistic Transformation in Thermodynamics. *Entropy*. 2007; 9(3):113-117.
https://doi.org/10.3390/e9030113

**Chicago/Turabian Style**

Bormashenko, Edward.
2007. "Entropy of Relativistic Mono-Atomic Gas and Temperature Relativistic Transformation in Thermodynamics" *Entropy* 9, no. 3: 113-117.
https://doi.org/10.3390/e9030113