4.1 Hermites’s Polynomials Application
Let Γ = (
K, S, v) be a 3−player game, with
K the set of players
k = 1, 2, 3. Thefinite set
Sk of cardinality
lk ∈
N is the set of pure strategies of each player where
k ∈
K,
skjk ∈
Sk, jk = 1, 2, 3 and
S =
S1 ×
S2 ×
S3 represent a set of pure strategy pro fi les with
s ∈
S as an element of that set and
l = 3 ∗ 3 ∗ 3 = 27 represents the cardinality of
S. The vectorial function
v :
S →
R3 associates with every profile
s ∈
S the vector of utilities
v(
s) = (
v1(
s),...,
v3(
s)), where
vk(
s) designates the utility of the player
k facing the profi le
s. In order to get facility of calculus we write the function
vk(
s) in an explicit way
vk(
s)=
vk (
j1, j2,...,
jn).The matrix
v3,27 represents all points of the Cartesian product Π
KSk see
Table 4. The vector
vk (
s) is the
k- column of
v. The graphic representation of the 3-player game is shown in
Figure 1.
In these games we obtain Nash’s equilibria in pure strategy (maximum utility MU,
Table 4) and mixed strategy (Minimum Entropy Theorem MET,
Table 5 and
Table 6). After finding the equilibria we carried out a comparison with the results obtained from applying the theory of quantum games developed previously.
Figure 1.
3-player game strategies
Figure 1.
3-player game strategies
Table 4.
Maximum utility (random utilities): maxp (u1 + u2 + u3)
Nash Utilities and Standard Deviations
Nash Utilities and Standard Deviations
Maxp (u1 + u2 + u3) = 20.4 |
---|
| |
u1 | u2 | u3 | |
8.7405 | 9.9284 | 1.6998 | |
σ1 | σ2 | σ3 | |
6.3509 | 6.2767 | 3.8522 | |
H1 | H2 | H3 | |
4.2021 | 4.1905 | 3.7121 | |
Nash Equilibria: Probabilities, Utilities
Nash Equilibria: Probabilities, Utilities
Player 1 | Player 2 | Player 3 |
---|
p11 | p12 | p13 | p21 | p22 | p23 | p31 | p32 | p33 |
---|
1 | 0 | 0 | 1 | 0 | 0 | 0 | 00 | 1 |
u11 | u12 | u13 | u21 | u22 | u23 | u31 | u32 | u33 |
8.7405 | 1.1120 | -3.8688 | 9.9284 | -1.2871 | -0.5630 | -1.9587 | 5.7426 | 1.6998 |
p11u11 | p12u12 | p13u13 | p21u21 | p22u22 | p23u23 | p31u31 | p32u32 | p33u33 |
8.7405 | 0.0000 | 0.0000 | 9.9284 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.6998 |
Kroneker Products
j1 | j2 | j3 | v1(j1,j2,j3) | v2(j1,j2,j3) | v3(j1,j2,j3) | p1j1 | p2j2 | p3j3 | p1j1p2j2 | p1j1p3j3 | p2j2p3j3 | u1(j1,j2,3) | u2(j1,j2,3) | u3(j1,j2,3) |
---|
1 | 1 | 1 | 2.9282 | -1.3534 | -1.9587 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -1.9587 |
1 | 1 | 2 | 6.2704 | 3.2518 | 5.7426 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 5.7426 |
1 | 1 | 3 | 8.7405 | 9.9284 | 1.6998 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 8.7405 | 9.9284 | 1.6998 |
1 | 2 | 1 | 4.1587 | 6.9687 | 4.1021 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 2 | 2 | 3.8214 | 2.7242 | 8.6387 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 2 | 3 | -3.2109 | -1.2871 | -4.1140 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | -1.2871 | 0.0000 |
1 | 3 | 1 | 3.0200 | 2.3275 | 6.8226 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 3 | 2 | -2.7397 | 3.0191 | 6.6629 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
1 | 3 | 3 | 1.1781 | -0.5630 | 5.3378 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | -0.5630 | 0.0000 |
2 | 1 | 1 | 3.2031 | -1.5724 | -0.9757 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 1 | 2 | 1.9478 | 2.9478 | 6.7366 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 1 | 3 | 1.1120 | 6.4184 | 5.0734 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.1120 | 0.0000 | 0.0000 |
2 | 2 | 1 | 5.3695 | 5.7086 | -0.7655 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 2 | 2 | 2.4164 | 1.6853 | 7.1051 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 2 | 3 | 5.2796 | 2.5158 | -4.7264 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 3 | 1 | -4.0524 | -4.5759 | 5.8849 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 3 | 2 | 3.8126 | -1.2267 | 4.8101 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
2 | 3 | 3 | -1.4681 | 10.8633 | 0.2388 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 1 | 1 | -0.4136 | -2.6124 | 4.5470 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 1 | 2 | 2.6579 | 1.7204 | 0.7272 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 1 | 3 | -3.8688 | 4.0884 | 11.2930 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | -3.8688 | 0.0000 | 0.0000 |
3 | 2 | 1 | 2.1517 | 4.8284 | 14.1957 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 2 | 2 | 6.8742 | -1.8960 | 7.4744 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 2 | 3 | 2.9484 | 2.1771 | 0.0130 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 3 | 1 | 3.9191 | -4.1335 | 7.4357 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 3 | 2 | -3.8252 | 3.0861 | 4.5020 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
3 | 3 | 3 | 3.6409 | 3.4438 | 5.4857 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Table 5.
Minimum entropy (random utilities): minp(σ1 + σ2 + σ3) ⇒ minp (H1 + H2 + H3)
Nash Utilities and Standard Deviations
Nash Utilities and Standard Deviations
Minp (σ1+σ2+σ3) = 1.382 |
---|
| |
u1 | u2 | u3 | |
0.85 | 2.19 | 4.54 | |
σ1 | σ2 | σ3 | |
1.19492 | 0.187 | 0.000 | |
H1 | H2 | H3 | |
2.596 | 1.090 | 0.035 | |
Nash Equilibria: Probabilities, Utilities
Nash Equilibria: Probabilities, Utilities
Player 1 | Player 2 | Player 3 |
---|
p11 | p12 | p13 | p21 | p22 | p23 | p31 | p32 | p33 |
0.0000 | 0.5188 | 0.4812 | 0.4187 | 0.0849 | 0.4964 | 0.2430 | 0.3779 | 0.3791 |
u11 | u12 | u13 | u21 | u22 | u23 | u31 | u32 | u33 |
2.8549 | 1.1189 | 0.5645 | 2.3954 | 2.1618 | 2.0256 | 4.5421 | 4.5421 | 4.5421 |
p11 u11 | p12 u12 | p13 u13 | p21 u21 | p22 u22 | p23 u23 | p31 u31 | p32 u32 | p33 u33 |
0.0000 | 0.5805 | 0.2717 | 1.0031 | 0.1835 | 1.0054 | 1.1036 | 1.7163 | 1.7221 |
Kroneker Products
j1 | j2 | j3 | v1(j1,j2,j3) | v2(j1,j2,j3) | v3(j1,j2,j3) | p1j1 | p2j2 | p3j3 | p1j1p2j2 | p1j1p3j3 | p2j2p3j3 | u1(j1,j2,j3) | u2(j1,j2,j3) | u3(j1,j2,j3) |
---|
1 | 1 | 1 | 2.93 | -1.35 | -1.96 | 0.0000 | 0.4187 | 0.2430 | 0.0000 | 0.0000 | 0.1017 | 0.2979 | 0.0000 | 0.0000 |
1 | 1 | 2 | 6.27 | 3.25 | 5.74 | 0.0000 | 0.4187 | 0.3779 | 0.0000 | 0.0000 | 0.1582 | 0.9922 | 0.0000 | 0.0000 |
1 | 1 | 3 | 8.74 | 9.93 | 1.70 | 0.0000 | 0.4187 | 0.3791 | 0.0000 | 0.0000 | 0.1588 | 1.3877 | 0.0000 | 0.0000 |
1 | 2 | 1 | 4.16 | 6.97 | 4.10 | 0.0000 | 0.0849 | 0.2430 | 0.0000 | 0.0000 | 0.0206 | 0.0858 | 0.0000 | 0.0000 |
1 | 2 | 2 | 3.82 | 2.72 | 8.64 | 0.0000 | 0.0849 | 0.3779 | 0.0000 | 0.0000 | 0.0321 | 0.1226 | 0.0000 | 0.0000 |
1 | 2 | 3 | -3.21 | -1.29 | -4.11 | 0.0000 | 0.0849 | 0.3791 | 0.0000 | 0.0000 | 0.0322 | -0.1034 | 0.0000 | 0.0000 |
1 | 3 | 1 | 3.02 | 2.33 | 6.82 | 0.0000 | 0.4964 | 0.2430 | 0.0000 | 0.0000 | 0.1206 | 0.3642 | 0.0000 | 0.0000 |
1 | 3 | 2 | -2.74 | 3.02 | 6.66 | 0.0000 | 0.4964 | 0.3779 | 0.0000 | 0.0000 | 0.1876 | -0.5139 | 0.0000 | 0.0000 |
1 | 3 | 3 | 1.18 | -0.56 | 5.34 | 0.0000 | 0.4964 | 0.3791 | 0.0000 | 0.0000 | 0.1882 | 0.2217 | 0.0000 | 0.0000 |
2 | 1 | 1 | 3.20 | -1.57 | -0.98 | 0.5188 | 0.4187 | 0.2430 | 0.2172 | 0.1260 | 0.1017 | 0.3259 | -0.1982 | -0.2119 |
2 | 1 | 2 | 1.95 | 2.95 | 6.74 | 0.5188 | 0.4187 | 0.3779 | 0.2172 | 0.1960 | 0.1582 | 0.3082 | 0.5778 | 1.4633 |
2 | 1 | 3 | 1.11 | 6.42 | 5.07 | 0.5188 | 0.4187 | 0.3791 | 0.2172 | 0.1967 | 0.1588 | 0.1765 | 1.2624 | 1.1021 |
2 | 2 | 1 | 5.37 | 5.71 | -0.77 | 0.5188 | 0.0849 | 0.2430 | 0.0440 | 0.1260 | 0.0206 | 0.1108 | 0.7196 | -0.0337 |
2 | 2 | 2 | 2.42 | 1.69 | 7.11 | 0.5188 | 0.0849 | 0.3779 | 0.0440 | 0.1960 | 0.0321 | 0.0775 | 0.3303 | 0.3129 |
2 | 2 | 3 | 5.28 | 2.52 | -4.73 | 0.5188 | 0.0849 | 0.3791 | 0.0440 | 0.1967 | 0.0322 | 0.1699 | 0.4948 | -0.2082 |
2 | 3 | 1 | -4.05 | -4.58 | 5.88 | 0.5188 | 0.4964 | 0.2430 | 0.2575 | 0.1260 | 0.1206 | -0.4887 | -0.5768 | 1.5153 |
2 | 3 | 2 | 3.81 | -1.23 | 4.81 | 0.5188 | 0.4964 | 0.3779 | 0.2575 | 0.1960 | 0.1876 | 0.7151 | -0.2405 | 1.2385 |
2 | 3 | 3 | -1.47 | 10.86 | 0.24 | 0.5188 | 0.4964 | 0.3791 | 0.2575 | 0.1967 | 0.1882 | -0.2763 | 2.1366 | 0.0615 |
3 | 1 | 1 | -0.41 | -2.61 | 4.55 | 0.4812 | 0.4187 | 0.2430 | 0.2015 | 0.1169 | 0.1017 | -0.0421 | -0.3055 | 0.9163 |
3 | 1 | 2 | 2.66 | 1.72 | 0.73 | 0.4812 | 0.4187 | 0.3779 | 0.2015 | 0.1819 | 0.1582 | 0.4206 | 0.3129 | 0.1465 |
3 | 1 | 3 | -3.87 | 4.09 | 11.29 | 0.4812 | 0.4187 | 0.3791 | 0.2015 | 0.1825 | 0.1588 | -0.6142 | 0.7460 | 2.2758 |
3 | 2 | 1 | 2.15 | 4.83 | 14.20 | 0.4812 | 0.0849 | 0.2430 | 0.0409 | 0.1169 | 0.0206 | 0.0444 | 0.5646 | 0.5800 |
3 | 2 | 2 | 6.87 | -1.90 | 7.47 | 0.4812 | 0.0849 | 0.3779 | 0.0409 | 0.1819 | 0.0321 | 0.2205 | -0.3448 | 0.3054 |
3 | 2 | 3 | 2.95 | 2.18 | 0.01 | 0.4812 | 0.0849 | 0.3791 | 0.0409 | 0.1825 | 0.0322 | 0.0949 | 0.3972 | 0.0005 |
3 | 3 | 1 | 3.92 | -4.13 | 7.44 | 0.4812 | 0.4964 | 0.2430 | 0.2389 | 0.1169 | 0.1206 | 0.4727 | -0.4833 | 1.7762 |
3 | 3 | 2 | -3.83 | 3.09 | 4.50 | 0.4812 | 0.4964 | 0.3779 | 0.2389 | 0.1819 | 0.1876 | -0.7175 | 0.5612 | 1.0754 |
3 | 3 | 3 | 3.64 | 3.44 | 5.49 | 0.4812 | 0.4964 | 0.3791 | 0.2389 | 0.1825 | 0.1882 | 0.6852 | 0.6284 | 1.3104 |
Table 6.
Minimum entropy (stone-paper-scissors): minp(σ1 + σ2 + σ3) ⇒ minp (H1 + H2 + H3)
Nash Utilities and Standard Deviations
Nash Utilities and Standard Deviations
Minp (σ1+σ2+σ3) = 1.382 |
---|
|
u1 | u2 | u3 | |
0.5500 | 0.5500 | 0.5500 | |
σ1 | σ2 | σ3 | |
0.0000 | 0.0000 | 0.0000 | |
H1 | H2 | H3 | |
0.0353 | 0.0353 | 0.0353 | |
Nash Equilibria: Probabilities, Utilities
Nash Equilibria: Probabilities, Utilities
Player 1 | Player 2 | Player 3 |
---|
p11 | p12 | p13 | p21 | p22 | p23 | p31 | p32 | p33 |
0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3300 | 0.3300 | 0.3300 |
u11 | u12 | u13 | u21 | u22 | u23 | u31 | u32 | u33 |
0.5500 | 0.5500 | 0.5500 | 0.5500 | 0.5500 | 0.5500 | 0.5556 | 0.5556 | 0.5556 |
p11 u11 | p12 u12 | p13 u13 | p21 u21 | p22 u22 | p23 u23 | p31 u31 | p32u32 | p33u33 |
0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1833 |
Kroneker Products
j1 | j2 | j3 | v1(j1,j2,j3) | v2(j1,j2,j3) | v3(j1,j2,j3) | p1j1 | p2j2 | p3j3 | p1j1p2j2 | p1j1p3j3 | p2j2p3j3 | u1(j1,j2,j3) | u2(j1,j2,j3) | u3(j1,j2,j3) |
---|
stone | stone | stone | 0 | 0 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.0000 | 0.0000 |
stone | stone | paper | 0 | 0 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.0000 | 0.1111 |
stone | stone | sccisor | 1 | 1 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.0000 |
stone | paper | stone | 0 | 1 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.1100 | 0.0000 |
stone | paper | paper | 0 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.1100 | 0.1111 |
stone | paper | sccisor | 1 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.1111 |
stone | sccisor | stone | 1 | 0 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.0000 | 0.1111 |
stone | sccisor | paper | 1 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.1111 |
stone | sccisor | sccisor | 1 | 0 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.0000 | 0.0000 |
paper | stone | stone | 1 | 0 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.0000 | 0.0000 |
paper | stone | paper | 1 | 0 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.0000 | 0.1111 |
paper | stone | sccisor | 1 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.1111 |
paper | paper | stone | 1 | 1 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.0000 |
paper | paper | paper | 0 | 0 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.0000 | 0.0000 |
paper | paper | sccisor | 0 | 0 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.0000 | 0.1111 |
paper | sccisor | stone | 1 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.1111 |
paper | sccisor | paper | 0 | 1 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.1100 | 0.0000 |
paper | sccisor | sccisor | 0 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.1100 | 0.1111 |
sccisor | stone | stone | 0 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.1100 | 0.1111 |
sccisor | stone | paper | 1 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.1111 |
sccisor | stone | sccisor | 0 | 1 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.1100 | 0.0000 |
sccisor | paper | stone | 1 | 1 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.1111 |
sccisor | paper | paper | 1 | 0 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.0000 | 0.0000 |
sccisor | paper | sccisor | 1 | 0 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.0000 | 0.1111 |
sccisor | sccisor | stone | 0 | 0 | 1 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.0000 | 0.1111 |
sccisor | sccisor | paper | 1 | 1 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.1100 | 0.1100 | 0.0000 |
sccisor | sccisor | sccisor | 0 | 0 | 0 | 0.3333 | 0.3333 | 0.3300 | 0.1111 | 0.1100 | 0.1100 | 0.0000 | 0.0000 | 0.0000 |
4.2 Time Series Application
The relationship between Time Series and Game Theory appears when we apply the entropy minimization theorem (EMT). This theorem (EMT) is a way to analyze the Nash-Hayek equilibrium in mixed strategies. Introducing the elements rationality and equilibrium in the domain of time series can be a big help, because it allows us to study the human behavior re fl ected and registered in historical data. The main contributions of this complementary focus on time series has a relationship with Econophysics and rationality.
Human behavior evolves and is the result of learning. The objective of learning is stability and optimal equilibrium. Due to the above-mentioned, we can affi rm that if learning is optimal then the convergence to equilibrium is faster than when the learning is sub-optimal. Introducing elements of Nash’s equilibrium in time series will allow us to evaluate learning and the convergence to equilibrium through the study of historical data (time series).
One of the branches of Physics called Quantum Mechanics was pioneered using Heisemberg’s uncer- tainty principle. This paper is simply the application of this principle in Game Theory and Time Series.
Econophysics is a newborn branch of the scientifi c development that attempts to establish the analogies between Economics and Physics, see
Mantenga and Stanley [
33]. The establishment of analogies is a creative way of applying the idea of cooperative equilibrium. The product of this cooperative equilibrium will produce synergies between these two sciences. From my point of view, the power of physics is the capacity of equilibrium formal treatment in stochastic dynamic systems. On the other hand, the power of Economics is the formal study of rationality, cooperative and non-cooperative equilibrium.
Econophysics is the beginning of a unifi cation stage of the systemic approach of scientifi c thought. I show that it is the beginning of a unifi cation stage but remains to create synergies with the rest of the sciences.
Let
be a covariance-stationary process with the mean
E[
xt] =
µ and
jth covariance
γjIf these autocovariances are absolutely summable, the population spectrum of
x is given by [
21].
If the
γj ’s represent autocovariances of a covariance-stationary process using the Possibility Theorem, then
and
Sx(
w) will be nonnegative for all
w. In general for an ARMA(
p,
q) process:
xt =
c +
ϕ1xt−1 +
ϕ2xt−2 + … +
ϕpxt−p +
εt +
θ1εt−2 + … +
θqεt−qThe population spectrum
Sx(
w) ∈ [
Sx(
w −
σw)
, Sx(
w +
σw)] is given by
Hamilton [
17].
where
and
w is a scalar.
Given an observed sample of
T observations denoted
x1,x2,.., xT , we can calculate up to
T − 1 sample autocovariances
γj from the formulas:
and
The sample periodogram can be expressed as:
When the sample size
T is an odd number,
xt will be expressed in terms of periodic functions with
M = (
T − 1)/2 representing different frequencies
The coefficients
can be estimated with OLS regression.
The sample variance of
xt can be expressed as:
The portion of the sample variance of
xt that can be attributed to cycles of frequency
wj is given by:
with
as the sample periodogram of frequency
wj.
Continuing with the methodology proposed by
Hamilton [
17]. we develop two examples that will allow us to verify the applicability of the Possibility Theorem.
In the second step, we find the value of the parameters
,
j = 1
,..., (
T − 1) for the time series
xt according to Q21 (
Table 7,
Figure 6).
In the third step, we find
(
Table 8,
Figure 7), only for the frequencies
w1, w3, w5, w12:
In the fourth step, we compute the values
σx,σw and
resp. for
y, z, u, (
Table 9).
In the fifth step, we verify that the Possibility Theorem is respected,
resp for
y,z,u, (
Table 9).
Example 6 Let {
vt}
t = 1,..,37 be a random variable, and w12 a random variable with gaussian probability density N (0, 1).
Both variables are related as continues By simplicity of computing, we suppose that
εv and
Et has gaussian probability density
N (0, 1). It is evident that
σw12 =
σε = 1 After a little computing we get the estimated value of
= 1.1334. The product
= 1.1334 verifi es the Possibility Theorem and permits us to compute:
The spectral analysis can not give the theoretical value of
E[
w12] = 2.037. The experimental value of
E[
w12] = 2.8 . You can see the results in
Figure 8,
Figure 9 and
Table 10.
Table 7.
Time series values of xt,yt,zt,ut
Table 7.
Time series values of xt,yt,zt,ut
P a rame te rs o f xt |
---|
j = t | γj | ρj | E [wj] | γj·cos (E[w1]*j) | γj·cos (E[w3]*j) | γj·cos (E[w5]*j) | γj·cos (E[w12]*j) | xt | yt | zt | ut | cos(w1(t-1)) | cos(w3(t-1)) | sen(w5(t-1)) | sen(w12(t-1)) |
---|
1 | 3,557 | 0,210 | 0,170 | 3,505 | 3,105 | 2,350 | -1,601 | -1,000 | 2,000 | 0,000 | 3,000 | 1,000 | 1,000 | 0,000 | 0,000 |
2 | -0,030 | -0,002 | 0,340 | -0,029 | -0,016 | 0,004 | 0,018 | 4,425 | 5,543 | 3,572 | 3,000 | 0,986 | 0,873 | 0,751 | 0,893 |
3 | 8,571 | 0,505 | 0,509 | 7,482 | 0,364 | -7,101 | 8,447 | -0,919 | -1,330 | -3,216 | 3,000 | 0,943 | 0,524 | 0,992 | -0,804 |
4 | -5,076 | -0,299 | 0,679 | -3,950 | 2,285 | 4,913 | 1,485 | 2,062 | 1,069 | -0,677 | 3,000 | 0,873 | 0,042 | 0,560 | -0,169 |
5 | -9,188 | -0,542 | 0,849 | -6,071 | 7,612 | 4,138 | 6,635 | 6,228 | 5,381 | 3,825 | 3,000 | 0,778 | -0,450 | -0,252 | 0,956 |
6 | 4,167 | 0,246 | 1,019 | 2,185 | -4,152 | 1,553 | 3,928 | -0,746 | -1,446 | -2,767 | 3,000 | 0,661 | -0,828 | -0,893 | -0,692 |
7 | -4,030 | -0,238 | 1,189 | -1,503 | 3,673 | -3,800 | 0,510 | 0,848 | -0,285 | -1,334 | 3,000 | 0,524 | -0,996 | -0,928 | -0,333 |
8 | -8,301 | -0,490 | 1,358 | -1,749 | 4,937 | -7,248 | 6,880 | 6,781 | 4,714 | 3,968 | 3,000 | 0,373 | -0,911 | -0,333 | 0,992 |
9 | 5,607 | 0,331 | 1,528 | 0,238 | -0,713 | 1,183 | 4,894 | 0,942 | -1,817 | -2,238 | 3,000 | 0,211 | -0,595 | 0,488 | -0,560 |
10 | -1,355 | -0,080 | 1,698 | 0,172 | -0,505 | 0,805 | -0,058 | 0,469 | -1,868 | -1,953 | 3,000 | 0,042 | -0,127 | 0,978 | -0,488 |
11 | -7,601 | -0,448 | 1,868 | 2,225 | -5,913 | 7,574 | 6,929 | 4,232 | 3,742 | 3,996 | 3,000 | -0,127 | 0,373 | 0,804 | 0,999 |
12 | 7,379 | 0,435 | 2,038 | -3,322 | 7,272 | -5,329 | 5,738 | -4,394 | -2,231 | -1,645 | 3,000 | -0,293 | 0,778 | 0,085 | -0,411 |
13 | 3,541 | 0,209 | 2,208 | -2,106 | 3,339 | 0,149 | 0,749 | -7,756 | -3,415 | -2,515 | 3,000 | -0,450 | 0,986 | -0,692 | -0,629 |
14 | -4,731 | -0,279 | 2,377 | 3,415 | -3,126 | -3,680 | 4,579 | -2,107 | 2,720 | 3,910 | 3,000 | -0,595 | 0,943 | -0,999 | 0,977 |
15 | 7,312 | 0,431 | 2,547 | -6,058 | 1,542 | 7,207 | 4,826 | -5,688 | -2,448 | -1,005 | 3,000 | -0,722 | 0,661 | -0,628 | -0,251 |
16 | 0,948 | 0,056 | 2,717 | -0,864 | -0,277 | 0,497 | 0,354 | -4,957 | -4,662 | -3,005 | 3,000 | -0,828 | 0,211 | 0,169 | -0,751 |
17 | -12,981 | -0,765 | 2,887 | 12,561 | 9,369 | 3,796 | 12,935 | 4,468 | 1,888 | 3,710 | 3,000 | -0,911 | -0,293 | 0,851 | 0,928 |
18 | -3,060 | -0,180 | 3,057 | 3,049 | 2,961 | 2,788 | -1,601 | 1,807 | -2,271 | -0,335 | 3,000 | -0,968 | -0,722 | 0,956 | -0,084 |
19 | -4,856 | -0,286 | - | 4,839 | 4,700 | 4,426 | -2,551 | -1,674 | -5,401 | -3,408 | 3,000 | -0,996 | -0,968 | 0,412 | -0,852 |
20 | -14,516 | -0,856 | - | 14,048 | 10,483 | 4,257 | 14,462 | 3,491 | 1,411 | 3,404 | 3,000 | -0,996 | -0,968 | -0,411 | 0,851 |
21 | 0,759 | 0,045 | - | -0,692 | -0,223 | 0,398 | 0,282 | -1,337 | -1,592 | 0,344 | 3,000 | -0,968 | -0,722 | -0,956 | 0,086 |
22 | 5,394 | 0,318 | - | -4,469 | 1,135 | 5,316 | 3,569 | -6,360 | -5,536 | -3,713 | 3,000 | -0,911 | -0,293 | -0,852 | -0,928 |
23 | -4,600 | -0,271 | - | 3,321 | -3,038 | -3,580 | 4,450 | 0,372 | 1,342 | 2,999 | 3,000 | -0,829 | 0,210 | -0,170 | 0,750 |
24 | 6,986 | 0,412 | - | -4,155 | 6,586 | 0,301 | 1,462 | -1,157 | -0,431 | 1,013 | 3,000 | -0,722 | 0,660 | 0,628 | 0,253 |
25 | 8,725 | 0,515 | - | -3,929 | 8,600 | -6,295 | 6,797 | -5,931 | -5,101 | -3,911 | 3,000 | -0,595 | 0,943 | 0,999 | -0,978 |
26 | -5,611 | -0,331 | - | 1,644 | -4,367 | 5,591 | 5,109 | 0,035 | 1,608 | 2,508 | 3,000 | -0,450 | 0,986 | 0,692 | 0,627 |
27 | 3,347 | 0,197 | - | -0,426 | 1,249 | -1,992 | 0,137 | -1,436 | 1,067 | 1,653 | 3,000 | -0,293 | 0,778 | -0,084 | 0,413 |
28 | 6,054 | 0,357 | - | 0,256 | -0,766 | 1,271 | 5,290 | -6,978 | -4,251 | -3,997 | 3,000 | -0,127 | 0,373 | -0,804 | -0,999 |
29 | -8,491 | -0,501 | - | -1,788 | 5,046 | -7,410 | 7,026 | 0,454 | 2,030 | 1,945 | 3,000 | 0,042 | -0,127 | -0,978 | 0,486 |
30 | 0,753 | 0,044 | - | 0,281 | -0,686 | 0,710 | -0,097 | 3,473 | 2,667 | 2,246 | 3,000 | 0,211 | -0,594 | -0,488 | 0,561 |
31 | 4,354 | 0,257 | - | 2,282 | -4,338 | 1,626 | 4,108 | 0,177 | -3,221 | -3,967 | 3,000 | 0,373 | -0,911 | 0,332 | -0,992 |
32 | -10,875 | -0,641 | - | -7,183 | 9,013 | 4,888 | 7,837 | 7,218 | 2,374 | 1,326 | 3,000 | 0,524 | -0,996 | 0,928 | 0,331 |
33 | -0,935 | -0,055 | - | -0,728 | 0,422 | 0,905 | 0,276 | 8,367 | 4,094 | 2,773 | 3,000 | 0,661 | -0,829 | 0,893 | 0,693 |
34 | 4,485 | 0,264 | - | 3,915 | 0,188 | -3,718 | 4,422 | -0,409 | -2,266 | -3,822 | 3,000 | 0,778 | -0,451 | 0,253 | -0,956 |
35 | -9,859 | -0,581 | - | -9,295 | -5,165 | 1,261 | 5,846 | 1,169 | 2,414 | 0,668 | 3,000 | 0,873 | 0,042 | -0,559 | 0,167 |
36 | 0,000 | - | - | - | - | - | - | 1,551 | 5,107 | 3,221 | 3,000 | 0,943 | 0,524 | -0,992 | 0,805 |
37 | - | - | - | - | - | - | - | -5,717 | -1,597 | -3,568 | 3,000 | 0,986 | 0,873 | -0,751 | -0,892 |
Table 8.
Frequencies, variances and sample periodogram of xt
Analysis of xt
|
---|
Variance: st2 | |
---|
E[(xt-E[xt])2] | 16,958 |
(a12+a32+b52+b1 | 16,500 |
γ0 | 16,958 |
T | 37,000 |
Frequencies | Wavelength | Coefficients | (aj2+bj2)/2 | Sample Periodogram | (4*pj/T)sx(E[wj]) |
---|
E[w1] | 0,170 | l1 | 37,000 | a1 | 2,000 | a12 | 2,000 | Sx(E[w1]) | 4,961 | 1,685 |
E[w3] | 0,509 | l2 | 12,333 | a3 | -3,000 | a32 | 4,500 | Sx(E[w3]) | 21,988 | 7,468 |
E[w5] | 0,849 | l3 | 7,400 | b5 | 2,000 | b52 | 2,000 | Sx(E[w5]) | 8,350 | 2,836 |
E[w12] | 2,038 | l4 | 3,083 | b12 | 4,000 | b122 | 8,000 | Sx(E[w12]) | 45,375 | 15,410 |
Table 9.
Verification of Possibility Theorem for series xt, yt, zt, ut
Table 9.
Verification of Possibility Theorem for series xt, yt, zt, ut
Heisenberg's Uncertainty Principle |
|
σxσw = 3,348 >1/2 | | σyσw = 4,234 >1/2 | |
| | | |
E[xt] | 0,000 | σx=E[(xt-E[xt])2] | 4,118 | | E[yt] | 0,000 | E[(yt-E[yt])2] | 3,206 |
E[w] | 0,892 | σw=E[(w-E[w])2] | 0,813 | | E[w] | 1,104 | E[(w-E[w])2] | 1,321 |
| | | |
σwmin | 0,121 | | σwmin | 0,156 | |
| | | |
| | Lower[w | Min[j] | Upper[wj] | Max[j] | | | | Lower[wj] | Min[j] | Upper[wj] | Max[j] |
E[w1] | 0,170 | 0,048 | 0,285 | 0,291 | 1,715 | | |
E[w3] | 0,509 | 0,388 | 2,285 | 0,631 | 3,715 | |
E[w5] | 0,849 | 0,728 | 4,285 | 0,970 | 5,715 | | E[w1] | 0,170 | 0,014 | 0,082 | 0,326 | 1,918 |
E[w12] | 2,038 | 1,916 | 11,285 | 2,159 | 12,715 | | E[w12] | 2,038 | 1,882 | 11,082 | 2,194 | 12,918 |
|
σzσw = 0,000 <1/2 | | σuσw = 0,000 <1/2 | |
| | | |
E[zt] | 0,000 | σz=E[(zt-E[zt])2] | 2,867 | | E[ut] | 3,000 | σu=E[(ut-E[ut])2] | 0,000 | |
E[w12] | 2,038 | σw=E[(w-E[w])2] | 0,000 | | E[w] | ∞ | σw=E[(w-E[w])2] | − | |
σwmin | 0,174 | | σwmin | ∞ | |
|
| | Lower[wMin[j] | Upper[wj] | Max[j] | | | | Lower[wj] | Min[j] | Upper[wj] | Max[j] |
E[w12] | 2,038 | 1,863 | 10,973 | 2,038 | 12,000 | | E[wi] | 2,038 | 0,000 | 0,000 | ∞ | ∞ |
|
Application of Possibility Theorem for time series vt
Application of Possibility Theorem for time series vt
Heisenberg's Uncertainty Principle |
|
σvσw12= 1,1334 > 1/2 | |
|
|
E[vt] | 0,0439 | σv=E[(vt-E[vt])2] | 1,1334 |
E[w12] | 2,0377 | σw=E[(w12-E[w12])2] | 1,0000 |
|
σwmin | 0,4412 | T | 37 | γ0 | 1,1334 |
|
| | Lower[w12] | Min[j] | Upper[w12] | Max[j] |
E[w12] | 2,0377 | 1,5966 | 9,4021 | 2,4789 | 14,5979 |
Figure 2.
yt = 2cos(w1(t − 1)) + 4 sin(w12(t − 1))
Figure 2.
yt = 2cos(w1(t − 1)) + 4 sin(w12(t − 1))
Figure 3.
zt = 4 sin(w12(t − 1))
Figure 3.
zt = 4 sin(w12(t − 1))
Figure 5.
Constitutive elements of time series xt
Figure 5.
Constitutive elements of time series xt
Figure 6.
Autocorrelations of time series xt
Figure 6.
Autocorrelations of time series xt
Figure 7.
Periodogram of time series xt
Figure 7.
Periodogram of time series xt
Figure 8.
Time series vt = sin(E[w12] + εt)(t − 1)) + εt
Figure 8.
Time series vt = sin(E[w12] + εt)(t − 1)) + εt
Figure 9.
Spectral analysis of vt
Figure 9.
Spectral analysis of vt