Improved NB Model Analysis of Earthquake Recurrence Interval Coefficient of Variation for Major Active Faults in the Hetao Graben and Northern Marginal Region
Abstract
1. Introduction
2. Theory and Methods for Improving the NB Model
2.1. Problems in the Traditional NB Model
2.2. Improvement of the NB Model
2.3. Iterative Optimization Method
3. Paleoseismic Data of Major Faults Along the Northern Margin of the Hetao Graben and Application of the Improved NB Model
3.1. Fault Systems and Seismic Data in the Study Area
3.2. Application of the Improved NB Model and Calculation of the Coefficient of Variation
4. Discussions
4.1. Statistical Bias Correction and Model Performance
4.2. Methodological Limitations
4.3. Scientific Significance and Implications for Seismic Hazard Assessment
4.4. Future Research Directions and Model Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, H.F. The Mechanics of the Earthquake, The California Earthquake of April 18, 1906; State Earthquake Investigation Commission, Carnegie Institution of Washington: Washington, DC, USA, 1910; Volume 2, pp. 16–18. [Google Scholar]
- Utsu, T. Large Earthquakes near Hokkaido and the Expectancy of the Occurrence of a Large Earthquake of Nemuro; Report of the Coordinating Committee for Earthquake Prediction; Coordinating Committee for Earthquake Prediction: Tsukuba, Japan, 1972; Volume 7, pp. 7–13. [Google Scholar]
- Rikitake, T. Probability of an earthquake occurrence as estimated from crustal strain. Tectonophysics 1974, 23, 299–312. [Google Scholar] [CrossRef]
- Hagiwara, Y. Probability of Earthquake Occurrence as Obtained from a Weibull Distribution Analysis of Crustal Stain. Tectonophysics 1974, 23, 313–318. [Google Scholar] [CrossRef]
- Nishenko, S.P.; Buland, R.A. A generic recurrence interval distribution for earthquake forecasting. Bull. Seismol. Soc. Am. 1987, 77, 1382–1399. [Google Scholar]
- Utsu, T. Estimation of Parameters for Recurrence Models of Earthquakes; Bulletin of the Earthquake Research Institute, University of Tokyo: Tokyo, Japan, 1984; Volume 59, pp. 53–66. [Google Scholar]
- Ellsworth, W.L.; Matthews, M.V.; Nadeau, R.M.; Nishenko, S.P.; Reasenberg, P.A.; Simpson, R.W. A Physically Based Earthquake Recurrence Model for Estimation of Long-Term Earthquake Probabilities; US Geological Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 1999; pp. 99–522. [CrossRef]
- Matthews, M.V. A Brownian Model for Recurrent Earthquakes. Bull. Seismol. Soc. Am. 2002, 92, 2233–2250. [Google Scholar] [CrossRef]
- Nas, M.; Bayrak, Y.; Mpapka, E.; Tsapanos, T.M. Conditional earthquake probabilities along the North Anatolian fault zone based on inverse Gaussian against lognormal distribution. J. Seismol. 2024, 28, 1389–1420. [Google Scholar] [CrossRef]
- Xu, W.; Wu, J.; Gao, M. Temporal distribution model and occurrence probability of M ≥ 6.5 earthquakes in North China Seismic Zone. Nat. Hazards 2023, 119, 125–141. [Google Scholar] [CrossRef]
- Sreejaya, K.P.; Podili, B.; Raghukanth, S.T.G. Physics-based probabilistic seismic hazard assessment using synthetic ground motions: Application to the stable continental region of India. J. Seismol. 2024, 28, 1247–1265. [Google Scholar] [CrossRef]
- Pasari, S.; Verma, H. Recurrence statistics of M ≥ 6 earthquakes in the Nepal Himalaya: Formulation and relevance to future earthquake hazards. Nat. Hazards 2024, 120, 7725–7748. [Google Scholar] [CrossRef]
- Neely, J.S.; Salditch, L.; Spencer, B.D.; Stein, S. A More Realistic Earthquake Probability Model Using Long-Term Fault Memory. Bull. Seismol. Soc. Am. 2022, 113, 843–855. [Google Scholar] [CrossRef]
- Guo, X.; Pan, H. A method for computing the aperiodicity parameter of the strong earthquake recurrence interval. Acta Seismol. Sin. 2015, 37, 411–419. [Google Scholar] [CrossRef]
- Field, E.H.; Biasi, G.P.; Bird, P.; Dawson, T.E.; Felzer, K.R.; Jackson, K.M.; Johnson, T.H.; Jordan, T.H.; Madden, C.; Michael, A.J.; et al. Long-term time-dependent probabilities for the third uniform California earthquake rupture forecast (UCERF3). Bull. Seism. Soc. Am. 2015, 105, 511–543. [Google Scholar] [CrossRef]
- Deng, Q.D.; Zhang, P.Z.; Ran, Y.K.; Yang, X.P.; Min, W.; Chu, Q.Z. Basic characteristics of active tectonics of China. Sci. China Ser. D Earth Sci. 2002, 32, 1020–1030. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Deng, Q.D.; Zhang, G.M.; Ma, J.; Gan, W.J.; Min, W.; Mao, F.Y.; Wang, Q. Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Ser. D Earth Sci. 2003, 33, 12–20. [Google Scholar] [CrossRef]
- Pan, B. Study on Seismic Hazard of Major Active Fault Zones in the Northern Margin of Hetao Rift Zone. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2012. [Google Scholar]
- Min, W.; Zhang, P.Z.; Deng, Q.D. Primary research of regional paleoearthquake recurrence. Acta Seismol. Sin. 2000, 22, 163–170. [Google Scholar]
- Chai, Z.Z.; Liao, Y.H.; Zhang, W.X.; Xu, W.J.; Shen, X.H.; Tian, Q.J. Late quaternary pleoearthquakes and their rupture features along the Lingwu fault. Seismol. Geol. 2001, 23, 15–23. [Google Scholar]
- Chen, L.C. Paleoearthquakes, the Law of Strong Earthquake Recurrence and Potential Sites for the Occurrence of Future Strong Earthquakes in the Hetao Fault-Depression Zone. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2002. [Google Scholar]
- Ran, Y.K.; Zhang, P.Z.; Chen, L.C. Study on the completeness of late Quaternary paleoearthquakes along the Daqingshan piedmont fault in Hetao fault-depression zone. Earth Sci. Front. 2003, 10, 207–216. [Google Scholar]
- Liu, J.; Wang, L.M. Using active fault data to evaluate long-term earthquake risk in Fenwei earthquake zone. Acta Seismol. Sin. 1996, 18, 427–435. [Google Scholar] [CrossRef]
- Ran, Y.K. Detailed Paleoseismic Studies at Several Typical Sites in China and Discussion on Great Earthquake Recurrence Behavior. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 1997. [Google Scholar]
- Parsons, T. Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: Example calculations for California. J. Geophys. Res. Solid Earth 2008, 113, B3. [Google Scholar] [CrossRef]
- Ben-Zion, Y. Collective Behavior of Earthquakes and Faults: Continuum-Discrete Transitions, Evolutionary Changes and Corresponding Dynamic Regimes. Rev. Geophys. 2008, 46, RG4006. [Google Scholar] [CrossRef]
- Wesnousky, S.G. The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull. Seismol. Soc. Am. 1994, 84, 1940–1959. [Google Scholar] [CrossRef]
- Stirling, M.; Goded, T.; Berryman, K.; Litchfield, N. Selection of earthquake scaling relationships for seismic-hazard analysis. Bull. Seismol. Soc. Am. 2013, 103, 2993–3011. [Google Scholar] [CrossRef]




| Sample Size of Intervals | α0 = 0.1 | α0 = 0.2 | α0 = 0.3 | α0 = 0.4 | α0 = 0.5 | α0 = 0.6 |
|---|---|---|---|---|---|---|
| 2 | α = 0.702α0 | α = 0.689α0 | α = 0.665α0 | α = 0.637α0 | α = 0.610α0 | α = 0.582α0 |
| 3 | α = 0.814α0 | α = 0.802α0 | α = 0.783α0 | α = 0.763α0 | α = 0.734α0 | α = 0.707α0 |
| 4 | α = 0.862α0 | α = 0.854α0 | α = 0.837α0 | α = 0.820α0 | α = 0.798α0 | α = 0.775α0 |
| 5 | α = 0.894α0 | α = 0.884α0 | α = 0.871α0 | α = 0.855α0 | α = 0.837α0 | α = 0.816α0 |
| 6 | α = 0.911α0 | α = 0.904α0 | α = 0.896α0 | α = 0.880α0 | α = 0.864α0 | α = 0.846α0 |
| No. | Fault | Segment | Paleoseismic Events | Number of Intervals | Sources | |
|---|---|---|---|---|---|---|
| f1 | Luoshan eastern piedmont fault | E1: 8200 ± 600 E2: 5020 ± 70 E3: 3331 ± 92 E4: 464 | 3 | 1.2326 0.6547 1.1128 | [19] | |
| f2 | Yellow River–Lingwu fault | Lingwu segment | E1: 27,150 ± 778 E2: 20,000 E3: 13,070 ± 60 E4: 10,586 ± 50 E5: 6000 | 4 | 1.3522 1.3106 0.4698 0.8673 | [20] |
| f3 | Helanshan eastern piedmont fault | E1: 8240 ± 170 E2: 6330 ± 80 E3: 4760 ± 80 E4: 2675 ± 70 E5: 286 | 4 | 0.9605 0.7895 1.0485 1.2014 | [19] | |
| f4 | Langshan piedmont fault | Eastern Xibulong segment | E1: 3990 E2: 3655 E3: 2990 E4: 2380 | 3 | 0.6242 1.2391 1.1366 | [21] |
| f5 | Seertenshan piedmont fault | Dashetai segment | E1: 31,690 ± 1770 E2: 23,000 ± 1320 E3: 15,420 ± 870 E4: 7440 ± 440 | 3 | 1.0751 0.9377 0.9872 | [21] |
| Wulanhudong segment | E1: 25,130 ± 1430 E2: 14,570 ± 820 E3: 11,660 ± 650 E4: 7220 ± 400 | 3 | 1.7688 0.4874 0.7437 | |||
| f6 | Wulashan piedmont fault | Gongmiaozi–Heshunzhuang segment | E1: 7215 ± 255 E2: 5935 ± 45 E3: 3645 ± 55 E4: 1655 ± 185 | 3 | 0.6919 1.2378 1.0703 | [21] |
| Heshunzhuang–Baotou segment | E1: 23,860 ± 1000 E2: 17,425 ± 970 E3: 16,500 ± 600 E4: 13,400 ± 600 E5: 11,850 ± 830 E6: 8385 ± 470 E7: 4130 ± 78 | 6 | 1.9569 0.2813 0.9427 0.4714 1.0537 1.2940 | |||
| f7 | Daqingshan piedmont fault | Tumd Right Banner segment | E1: 10,309 ± 991 E2: 8760 ± 500 E3: 4545 ± 466 E4: 3650 ± 280 E5: 1176 | 4 | 0.6784 1.8461 0.3920 1.0835 | [22] |
| Tumd Left Banner segment | E1: 11,000 E2: 9000 E3: 7000 E4: 4000 E5: 2000 | 4 | 0.8889 0.8889 1.3333 0.8889 | |||
| Hohhot segment | E1: 18,750 ± 750 E2: 16,970 ± 960 E3: 14,650 ± 670 E4: 11,820 ± 690 E5: 9450 ± 260 E6: 6830 ± 260 E7: 4500 ± 230 | 6 | 0.7495 0.9768 1.1916 0.9979 1.1032 0.9811 | |||
| f8 | Wutaishan northern piedmont fault | Eastern segment | E1: 6500 E2: 4000 E3: 1480 | 2 | 0.9960 1.0040 | [23] |
| f9 | Taibai–Weishan northern piedmont fault | Central segment | E1: 7230 E2: 3600 E3: 390 | 2 | 1.0614 0.9386 | [18] |
| f10 | Yangyuan Basin southern margin fault | Segment A | E1: 20,220 E2: 15,680 E3: 14,247 E4: 8565 E5: 3800 | 4 | 1.1060 0.3491 1.3842 1.1608 | [18] |
| Segment B | E1: 15,845 E2: 10,950 E3: 8970 E4: 6650 | 3 | 1.5971 0.6460 0.7569 | |||
| f11 | Yanggao–Tianzhen northern margin fault | Western segment | E1: 9365 E2: 8760 E3: 7972 | 2 | 0.8686 1.1314 | [18] |
| Eastern segment | E1: 14,512 E2: 12,520 E3: 10,405 E4: 6007 | 3 | 0.7026 0.7460 1.5513 | |||
| f12 | Xuanhua Basin southern margin fault | E1: 8540 E2: 7080 E3: 5310 | 2 | 0.9040 1.0960 | [24] | |
| f13 | Huai–Zhuo Basin northern margin fault | Northern segment | E1: 20,500 ± 1180 E2: 14,500 ± 710 E3: 6700 ± 600 E4: <1310 | 3 | 0.9068 1.1788 0.9144 | [23] |
| Southern segment | E1: 18,750 ± 1400 E2: 16,970 ± 700 E3: 14,650 ± 2100 E4: 11,820 E5: 9450 ± 400 E6: 6830 ±500 E7: <2865 | 5 | 0.7466 0.9732 1.1871 0.9941 1.0990 | |||
| f14 | Xinbaoan–Shacheng fault | E1: 23,205 ± 905 E2: 16,025 ± 615 E3: 8159 ± 500 E4: <7619 ± 95 | 2 | 0.9544 1.0456 | [24] | |
| f15 | Yanfan Basin northern margin fault | Langshan–Fangjiachong segment | E1: 19,850 ± 750 E2: 10,505 ± 497 E3: 4900 ± 400 | 2 | 1.2502 0.7498 | [24] |
| Fangjiachong–Hanhaozhuang segment | E1: 19,850 ± 750 E2: 16,000 ± 1300 E3: 10,505 ± 497 E4: 6599 ± 155 E5: 541 | 4 | 0.7976 1.1383 0.8092 1.2550 | |||
| Hanhaozhuang–Xinzhuangpu segment | E1: 19,850 ± 750 E2: 13,600 ± 1000 E3: 6599 ± 155 | 2 | 0.9433 1.0567 | |||
| Yanwanggou–Shuigou segment | E1: 32,050 ± 1050 E2: 21,400 ± 900 E3: 10,500 ± 300 | 2 | 0.9884 1.0116 | |||
| Langshan–Sangying segment | E1: 27,640 ± 680 E2: 13,950 ± 550 E3: 6850 ± 650 E4: <3663 ± 165 | 2 | 1.3170 0.6830 |
| Iteration Step | Initial α0 | α/α0 (2 Interval) | α/α0 (3 Interval) | α/α0 (4 Interval) | α/α0 (5 Interval) | α/α0 (6 Interval) | Resulting α |
|---|---|---|---|---|---|---|---|
| 1 | 0.306 | 0.664 | 0.782 | 0.838 | 0.871 | 0.894 | 0.374 |
| 2 | 0.374 | 0.647 | 0.769 | 0.826 | 0.862 | 0.884 | 0.380 |
| 3 | 0.380 | 0.646 | 0.766 | 0.825 | 0.859 | 0.882 | 0.381 |
| 4 | 0.381 | 0.644 | 0.766 | 0.824 | 0.858 | 0.883 | 0.381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, J.; Guo, X. Improved NB Model Analysis of Earthquake Recurrence Interval Coefficient of Variation for Major Active Faults in the Hetao Graben and Northern Marginal Region. Entropy 2026, 28, 107. https://doi.org/10.3390/e28010107
Li J, Guo X. Improved NB Model Analysis of Earthquake Recurrence Interval Coefficient of Variation for Major Active Faults in the Hetao Graben and Northern Marginal Region. Entropy. 2026; 28(1):107. https://doi.org/10.3390/e28010107
Chicago/Turabian StyleLi, Jinchen, and Xing Guo. 2026. "Improved NB Model Analysis of Earthquake Recurrence Interval Coefficient of Variation for Major Active Faults in the Hetao Graben and Northern Marginal Region" Entropy 28, no. 1: 107. https://doi.org/10.3390/e28010107
APA StyleLi, J., & Guo, X. (2026). Improved NB Model Analysis of Earthquake Recurrence Interval Coefficient of Variation for Major Active Faults in the Hetao Graben and Northern Marginal Region. Entropy, 28(1), 107. https://doi.org/10.3390/e28010107

