Five Fristonian Formulae
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worsley, K.J.; Marrett, S.; Neelin, P.; Vandal, A.C.; Friston, K.J.; Evans, A.C. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 1996, 4, 58–73. [Google Scholar] [CrossRef]
- Lueck, C.J.; Zeki, S.; Friston, K.J.; Deiber, M.-P.; Cope, P.; Cunningham, V.J.; Lammertsma, A.A.; Kennard, C.; Frackowiak, R.S.J. The colour centre in the cerebral cortex of man. Nature 1989, 340, 386–389. [Google Scholar] [CrossRef]
- Friston, K.J.; Jezzard, P.; Turner, R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1994, 1, 153–171. [Google Scholar] [CrossRef]
- Friston, K.J.; Holmes, A.P.; Worsley, K.J.; Poline, J.-P.; Frith, C.D.; Frackowiak, R.S.J. Statistical parametric maps in functional imaging: A general linear approach. Hum. Brain Mapp. 1994, 2, 189–210. [Google Scholar] [CrossRef]
- Friston, K.; Frith, C.; Turner, R.; Frackowiak, R. Characterizing Evoked Hemodynamics with fMRI. NeuroImage 1995, 2, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Flandin, G.; Friston, K. Statistical Parametric Mapping (SPM). Scholarpedia 2008 [cited 2025 10/04/25]. Available online: http://www.scholarpedia.org/article/SPM (accessed on 1 July 2025).
- Kiebel, S.; Holmes, A.P. Chapter 37—The General Linear Model. In Human Brain Function, 2nd ed.; Frackowiak, R.S.J., et al., Eds.; Academic Press: Burlington, VT, USA, 2004; pp. 725–760. [Google Scholar]
- Mazor, M.; Mukamel, R. A Randomization-Based, Model-Free Approach to Functional Neuroimaging: A Proof of Concept. Entropy 2024, 26, 751. [Google Scholar] [CrossRef] [PubMed]
- Hipólito, I.; Ramstead, M.J.; Convertino, L.; Bhat, A.; Friston, K.; Parr, T. Markov blankets in the brain. Neurosci. Biobehav. Rev. 2021, 125, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.E.; Gonzalez-Martinez, J.; Jirsa, V.; Chauvel, P.; Alario, F.-X.; Liegeois-Chauvel, C. Assessing Functional Connectivity Dynamics During Cognitive Tasks Involving the Dorsal Stream. Entropy 2025, 27, 566. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and Effective Connectivity: A Review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. NeuroImage 2003, 19, 1273–1302. [Google Scholar] [CrossRef]
- Beal, M.J. Variational Algorithms for Approximate Bayesian Inference. Ph.D. Thesis, University of London United Kingdom, London, UK, 2003. [Google Scholar]
- Penny, W. Comparing Dynamic Causal Models using AIC, BIC and Free Energy. NeuroImage 2012, 59, 319–330. [Google Scholar] [CrossRef]
- Zeidman, P.; Friston, K.; Parr, T. A primer on Variational Laplace (VL). NeuroImage 2023, 279, 120310. [Google Scholar] [CrossRef] [PubMed]
- Winn, J.; Bishop, C.M. Variational message passing. J. Mach. Learn. Res. 2005, 6, 661–694. [Google Scholar]
- Friston, K.; Preller, K.H.; Mathys, C.; Cagnan, H.; Heinzle, J.; Razi, A.; Zeidman, P. Dynamic causal modelling revisited. NeuroImage 2019, 199, 730–744. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.M.; Usrey, W.M.; Adams, R.A.; Mangun, G.R.; Fries, P.; Friston, K.J. Canonical microcircuits for predictive coding. Neuron 2012, 76, 695–711. [Google Scholar] [CrossRef]
- Marreiros, A.; Kiebel, S.; Friston, K. Dynamic causal modelling for fMRI: A two-state model. NeuroImage 2008, 39, 269–278. [Google Scholar] [CrossRef]
- Kiebel, S.J.; Garrido, M.I.; Moran, R.J.; Friston, K.J. Dynamic causal modelling for EEG and MEG. Cogn. Neurodynamics 2008, 2, 121–136. [Google Scholar] [CrossRef]
- Wei, H.; Jafarian, A.; Zeidman, P.; Litvak, V.; Razi, A.; Hu, D.; Friston, K.J. Bayesian fusion and multimodal DCM for EEG and fMRI. NeuroImage 2020, 211, 116595. [Google Scholar] [CrossRef]
- van Wijk, B.C.; Cagnan, H.; Litvak, V.; Kühn, A.A.; Friston, K.J. Generic dynamic causal modelling: An illustrative application to Parkinson’s disease. NeuroImage 2018, 181, 818–830. [Google Scholar] [CrossRef]
- Kiebel, S.J.; Garrido, M.I.; Friston, K.J. Dynamic causal modelling of evoked responses: The role of intrinsic connections. NeuroImage 2007, 36, 332–345. [Google Scholar] [CrossRef]
- Friston, K.J.; Kahan, J.; Biswal, B.; Razi, A. A DCM for resting state fMRI. NeuroImage 2014, 94, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Daunizeau, J.; Stephan, K.; Friston, K. Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise? NeuroImage 2012, 62, 464–481. [Google Scholar] [CrossRef] [PubMed]
- Novelli, L.; Friston, K.; Razi, A. Spectral dynamic causal modeling: A didactic introduction and its relationship with functional connectivity. Netw. Neurosci. 2024, 8, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Parr, T.; Zeidman, P.; Razi, A.; Flandin, G.; Daunizeau, J.; Hulme, O.J.; Billig, A.J.; Litvak, V.; Price, C.J. Second waves, social distancing, and the spread of COVID-19 across the USA. Wellcome Open Res. 2021, 5, 103. [Google Scholar] [CrossRef]
- Friston, K.J.; Parr, T.; Zeidman, P.; Razi, A.; Flandin, G.; Daunizeau, J.; Hulme, O.J.; Billig, A.J.; Litvak, V.; Moran, R.J. Dynamic causal modelling of COVID-19. Wellcome Open Res. 2020, 5, 89. [Google Scholar] [CrossRef]
- Friston, K.J.; Parr, T.; Zeidman, P.; Razi, A.; Flandin, G.; Daunizeau, J.; Hulme, O.J.; Billig, A.J.; Litvak, V.; Price, C.J. Testing and tracking in the UK: A dynamic causal modelling study. Wellcome Open Res. 2021, 5, 144. [Google Scholar] [CrossRef]
- Sun, B.; Deng, J.; Scheel, N.; Zhu, D.C.; Ren, J.; Zhang, R.; Li, T. Causalized Convergent Cross Mapping and Its Implementation in Causality Analysis. Entropy 2024, 26, 539. [Google Scholar] [CrossRef]
- Friston, K.J.; Bastos, A.M.; Oswal, A.; van Wijk, B.; Richter, C.; Litvak, V. Granger causality revisited. NeuroImage 2014, 101, 796–808. [Google Scholar] [CrossRef]
- Friston, K.; Stephan, K.; Li, B.; Daunizeau, J. Generalised Filtering. Math. Probl. Eng. 2010, 2010, 621670. [Google Scholar] [CrossRef]
- Kalman, R.E.; Bucy, R.S. New results in linear filtering and prediction theory. J. Basic Eng. 1961, 83, 95–108. [Google Scholar] [CrossRef]
- Baltieri, M.; Buckley, C.L. PID Control as a Process of Active Inference with Linear Generative Models. Entropy 2019, 21, 257. [Google Scholar] [CrossRef]
- Da Costa, L.; Da Costa, N.; Heins, C.; Medrano, J.; Pavliotis, G.A.; Parr, T.; Meera, A.A.; Friston, K. A theory of generalised coordinates for stochastic differential equations. arXiv 2024, arXiv:2409.15532. [Google Scholar]
- Cox, D.R.; Miller, H.D. The Theory of Stochastic Processes; Chapman & Hall/CRC: Boca Raton, FL, USA, 1965. [Google Scholar]
- Friston, K. Hierarchical Models in the Brain. PLoS Comput. Biol. 2008, 4, e1000211. [Google Scholar] [CrossRef]
- Feldman, H.; Friston, K. Attention, Uncertainty, and Free-Energy. Front. Hum. Neurosci. 2010, 4, 215. [Google Scholar] [CrossRef]
- Friston, K.; Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1211. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.P.N.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Hess, A.J.; von Werder, D.; Harrison, O.K.; Heinzle, J.; Stephan, K.E. Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal Inference. Entropy 2024, 26, 1127. [Google Scholar] [CrossRef] [PubMed]
- Medrano, J.; Sajid, N. A Broken Duet: Multistable Dynamics in Dyadic Interactions. Entropy 2024, 26, 731. [Google Scholar] [CrossRef] [PubMed]
- Collerton, D.; Tsuda, I.; Nara, S. Episodic Visual Hallucinations, Inference and Free Energy. Entropy 2024, 26, 557. [Google Scholar] [CrossRef]
- Wright, J.; Bourke, P. Markov Blankets and Mirror Symmetries—Free Energy Minimization and Mesocortical Anatomy. Entropy 2024, 26, 287. [Google Scholar] [CrossRef]
- Kim, C.S. Bayesian Mechanics of Synaptic Learning Under the Free-Energy Principle. Entropy 2024, 26, 984. [Google Scholar] [CrossRef]
- Deakin, J.; Schofield, A.; Heinke, D. Support for the Time-Varying Drift Rate Model of Perceptual Discrimination in Dynamic and Static Noise Using Bayesian Model-Fitting Methodology. Entropy 2024, 26, 642. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.; Figueiredo, P.; Deco, G.; Luppi, A.I.; Cabral, J. Metastable Oscillatory Modes as a Signature of Entropy Management in the Brain. Entropy 2024, 26, 1048. [Google Scholar] [CrossRef] [PubMed]
- Tucker, D.M.; Luu, P. Feasibility of a Personal Neuromorphic Emulation. Entropy 2024, 26, 759. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, S.; Rodriguez, A.J.; Htet, A.; Di Nuovo, A. Active Inference for Learning and Development in Embodied Neuromorphic Agents. Entropy 2024, 26, 582. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [Google Scholar] [CrossRef]
- Buckley, C.L.; Kim, C.S.; McGregor, S.; Seth, A.K. The free energy principle for action and perception: A mathematical review. J. Math. Psychol. 2017, 81, 55–79. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1988. [Google Scholar]
- Bhat, A.; Parr, T.; Ramstead, M.; Friston, K. Immunoceptive inference: Why are psychiatric disorders and immune responses intertwined? Biol. Philos. 2021, 36, 27. [Google Scholar] [CrossRef]
- Adams, R.A.; Shipp, S.; Friston, K.J. Predictions not commands: Active inference in the motor system. Anat. Embryol. 2012, 218, 611–643. [Google Scholar] [CrossRef]
- Friston, K. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184. [Google Scholar]
- Clark, A. Hacking the Predictive Mind. Entropy 2024, 26, 677. [Google Scholar] [CrossRef]
- Badcock, P.B.; Davey, C.G. Active Inference in Psychology and Psychiatry: Progress to Date? Entropy 2024, 26, 833. [Google Scholar] [CrossRef]
- Ruffini, G.; Castaldo, F.; Lopez-Sola, E.; Sanchez-Todo, R.; Vohryzek, J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. Entropy 2024, 26, 953. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J. Friston, Free Energy, and Psychoanalytic Psychotherapy. Entropy 2024, 26, 343. [Google Scholar] [CrossRef] [PubMed]
- Moran, R.J.; Campo, P.; Symmonds, M.; Stephan, K.E.; Dolan, R.J.; Friston, K.J. Free energy, precision and learning: The role of cholinergic neuromodulation. Off. J. Soc. Neurosci. 2013, 33, 8227–8236. [Google Scholar] [CrossRef] [PubMed]
- Kanai, R.; Komura, Y.; Shipp, S.; Friston, K. Cerebral hierarchies: Predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 169. [Google Scholar] [CrossRef]
- Limanowski, J.; Adams, R.A.; Kilner, J.; Parr, T. The Many Roles of Precision in Action. Entropy 2024, 26, 790. [Google Scholar] [CrossRef]
- Fields, C.; Goldstein, A.; Sandved-Smith, L. Making the Thermodynamic Cost of Active Inference Explicit. Entropy 2024, 26, 622. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F.; Levin, M. Principled Limitations on Self-Representation for Generic Physical Systems. Entropy 2024, 26, 194. [Google Scholar] [CrossRef]
- Sun, C.; Yao, M.; Xiong, R.; Su, Y.; Zhu, B.; Chen, Y.-C.; Ao, P. Evolution of Telencephalon Anterior–Posterior Patterning through Core Endogenous Network Bifurcation. Entropy 2024, 26, 631. [Google Scholar] [CrossRef]
- Radomski, B.M.; Dołęga, K. Forced Friends: Why the Free Energy Principle Is Not the New Hamilton’s Principle. Entropy 2024, 26, 797. [Google Scholar] [CrossRef]
- Kaplan, R.; Friston, K.J. Planning and navigation as active inference. Biol. Cybern. 2018, 112, 323–343. [Google Scholar] [CrossRef]
- Parr, T.; Pezzulo, G.; Friston, K.J. Active Inference: The Free Energy Principle in Mind, Brain, and Behavior; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Friston, K.; Rigoli, F.; Ognibene, D.; Mathys, C.; Fitzgerald, T.; Pezzulo, G. Active inference and epistemic value. Cogn. Neurosci. 2015, 6, 187–214. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.; FitzGerald, T.; Rigoli, F.; Schwartenbeck, P.; Pezzulo, G. Active Inference: A Process Theory. Neural Comput. 2017, 29, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Pezzulo, G.; Parr, T.; Friston, K. Active inference as a theory of sentient behavior. Biol. Psychol. 2024, 186, 108741. [Google Scholar] [CrossRef] [PubMed]
- Kagan, B.J.; Kitchen, A.C.; Tran, N.T.; Habibollahi, F.; Khajehnejad, M.; Parker, B.J.; Bhat, A.; Rollo, B.; Razi, A.; Friston, K.J. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 2022, 110, 3952–3969.e8. [Google Scholar] [CrossRef]
- Pezzulo, G.; Rigoli, F.; Friston, K.J. Hierarchical Active Inference: A Theory of Motivated Control. Trends Cogn. Sci. 2018, 22, 294–306. [Google Scholar] [CrossRef]
- Friston, K.J.; Rosch, R.; Parr, T.; Price, C.; Bowman, H. Deep temporal models and active inference. Neurosci. Biobehav. Rev. 2017, 77, 388–402. [Google Scholar] [CrossRef]
- Kiefer, A.B. Intrinsic Motivation as Constrained Entropy Maximization. Entropy 2025, 27, 372. [Google Scholar] [CrossRef]
- Fisher, E.L.; Hohwy, J. The Universal Optimism of the Self-Evidencing Mind. Entropy 2024, 26, 518. [Google Scholar] [CrossRef]
- Nehrer, S.W.; Ehrenreich Laursen, J.; Heins, C.; Friston, K.; Mathys, C.; Thestrup Waade, P. Introducing ActiveInference.jl: A Julia Library for Simulation and Parameter Estimation with Active Inference Models. Entropy 2025, 27, 62. [Google Scholar] [CrossRef] [PubMed]
- Waade, P.T.; Olesen, C.L.; Laursen, J.E.; Nehrer, S.W.; Heins, C.; Friston, K.; Mathys, C. As One and Many: Relating Individual and Emergent Group-Level Generative Models in Active Inference. Entropy 2025, 27, 143. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, M.; Pitliya, R.J.; Smithe, T.S.C.; Friedman, D.A.; Friston, K.; Ramstead, M.J.D. Shared Protentions in Multi-Agent Active Inference. Entropy 2024, 26, 303. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Isomura, T.; Razi, A. On Predictive Planning and Counterfactual Learning in Active Inference. Entropy 2024, 26, 484. [Google Scholar] [CrossRef]
- Carl, M. An Active Inference Agent for Modeling Human Translation Processes. Entropy 2024, 26, 616. [Google Scholar] [CrossRef]
- de Tinguy, D.; Van de Maele, T.; Verbelen, T.; Dhoedt, B. Spatial and Temporal Hierarchy for Autonomous Navigation Using Active Inference in Minigrid Environment. Entropy 2024, 26, 83. [Google Scholar] [CrossRef]
- Matsumoto, T.; Ohata, W.; Tani, J. Incremental Learning of Goal-Directed Actions in a Dynamic Environment by a Robot Using Active Inference. Entropy 2023, 25, 1506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parr, T.; Pezzulo, G.; Moran, R.; Ramstead, M.; Constant, A.; Bhat, A. Five Fristonian Formulae. Entropy 2025, 27, 944. https://doi.org/10.3390/e27090944
Parr T, Pezzulo G, Moran R, Ramstead M, Constant A, Bhat A. Five Fristonian Formulae. Entropy. 2025; 27(9):944. https://doi.org/10.3390/e27090944
Chicago/Turabian StyleParr, Thomas, Giovanni Pezzulo, Rosalyn Moran, Maxwell Ramstead, Axel Constant, and Anjali Bhat. 2025. "Five Fristonian Formulae" Entropy 27, no. 9: 944. https://doi.org/10.3390/e27090944
APA StyleParr, T., Pezzulo, G., Moran, R., Ramstead, M., Constant, A., & Bhat, A. (2025). Five Fristonian Formulae. Entropy, 27(9), 944. https://doi.org/10.3390/e27090944