Enhanced Key Node Identification in Complex Networks Based on Fractal Dimension and Entropy-Driven Spring Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Network Manipulation
2.2. Eigenvalue Computation
2.2.1. Second-Order Neighborhood Centrality
2.2.2. Betweenness Centrality
2.2.3. The Second-Order Neighborhood Betweenness Entropy
2.2.4. Fuzzy Local Dimension and Fractal Techniques
- Traverse all nodes in the network and sequentially select each node as the center node.
- For each center node, calculate within different radius .
- Substitute and the corresponding radius into the double logarithmic scale fitting curve, and obtain the fuzzy local dimension based on the slope of the curve.
- Repeat the above steps to calculate the fuzzy local dimension for all nodes in the network.
2.3. Importance Value Calculation
2.3.1. Improved Spring Model
2.3.2. Calculate Impact Range
2.3.3. Attenuation Factor
2.4. SNEFLD-SM Key Node Identification Algorithm
Algorithm 1 Power Method |
Input: Network G. |
Output: Significance of each node. |
1. Calculate the second-order neighborhood centrality of each node according to Formula (2). |
2. Determine the betweenness centrality of each node using Formula (3). |
3. Calculate the second-order neighborhood betweenness entropy according to Formula (6). |
4. Calculate the fuzzy local dimension according to Formulas (7)–(10). |
5. Substitute the results into Formulas (11) and (12) and compute the influence range. |
6. For all do the following: |
7. Select the node with the highest value. |
8. For all do the following: |
9. Apply Formula (19) to reduce the value of node |
10. end for. |
11. end for. |
12. return SNEFLD-SM. |
13. Sequence the nodes in the list according to SNEFLD-SM. |
3. Experimental Evaluation and Performance Analysis
3.1. Datasets
3.2. Centrality Scores of Nodes
3.3. Measuring Effectiveness by SI Model
3.3.1. SI Model
3.3.2. SI Infection Results Analysis
3.4. Correlations with SI Model
3.4.1. Kendall’s Tau Coefficient
3.4.2. Real Infection Ability
3.4.3. Kendall’s Tau Coefficient Results Analysis
3.5. Assessing the Impact of the Second-Order Neighborhood Betweenness Entropy on SNEFLD-SM Algorithm
3.6. Time Complexity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guimera, R.; Danon, L.; Guilera, A.D.; Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2003, 68, 065103. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.N.; Malacarne, A.; e Silva, J.W.S.; Kirst, F.V.; De-Bortoli, R. The scientific collaboration networks in university management in Brazil. Creat. Educ. 2018, 9, 1469. [Google Scholar] [CrossRef]
- Sathyapriya, R.; Vijayabaskar, M.; Vishveshwara, S. Insights into protein–DNA interactions through structure network analysis. PLoS Comput. Biol. 2008, 4, e1000170. [Google Scholar] [CrossRef] [PubMed]
- Jain, L.; Katarya, R.; Sachdeva, S. Opinion leader detection using whale optimization algorithm in online social network. Expert Syst. Appl. 2020, 142, 113016. [Google Scholar] [CrossRef]
- Leskovec, J.; Adamic, L.A.; Huberman, B.A. The dynamics of viral marketing. ACM Trans. Web (TWEB) 2007, 1, 5-es. [Google Scholar] [CrossRef]
- Cohen, R.; Havlin, S.; Ben-Avraham, D. Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 2003, 91, 247901. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Newman, M.E.J. A measure of betweenness centrality based on random walks. Soc. Netw. 2005, 27, 39–54. [Google Scholar] [CrossRef]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Pu, J.; Chen, X.; Wei, D.; Liu, Q.; Deng, Y. Identifying influential nodes based on local dimension. Europhys. Lett. 2014, 107, 10010. [Google Scholar] [CrossRef]
- Wen, T.; Deng, Y. Identification of influencers in complex networks by local information dimensionality. Inf. Sci. 2020, 512, 549–562. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, S.; Deng, Y.; Cheong, K.H. LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality. IEEE Trans. Fuzzy Syst. 2022, 30, 3284–3296. [Google Scholar] [CrossRef]
- Wen, T.; Jiang, W. Identifying influential nodes based on fuzzy local dimension in complex networks. Chaos Solitons Fractals 2019, 119, 332–342. [Google Scholar] [CrossRef]
- Qiao, T.; Shan, W.; Yu, G.; Liu, C. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks. Entropy 2018, 20, 261. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, W.; Li, Y.; Du, X. Key Node Ranking in Complex Networks: A Novel Entropy and Mutual Information-Based Approach. Entropy 2020, 22, 52. [Google Scholar] [CrossRef] [PubMed]
- Zareie, A.; Sheikhahmadi, A.; Fatemi, A. Influential nodes ranking in complex networks: An entropy-based approach. Chaos Solitons Fractals 2017, 104, 485–494. [Google Scholar] [CrossRef]
- Ma, L.-l.; Ma, C.; Zhang, H.-F.; Wang, B.-H. Identifying influential spreaders in complex networks based on gravity formula. Phys. A Stat. Mech. Its Appl. 2016, 451, 205–212. [Google Scholar] [CrossRef]
- Guo, H.; Wang, S.; Yan, X.; Zhang, K. Node importance evaluation method of complex network based on the fusion gravity model. Chaos Solitons Fractals 2024, 183, 114924. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, X.; Yan, G.; Luo, H.; Yang, B.; Zhang, L.; Wang, Q. Important node ranking algorithm based on spring model. J. Comput. Eng. Appl. 2022, 58, 77–86. [Google Scholar]
- Huang, X.; Wang, X.; Qin, H.; Zhou, Z. Research on Power Cable Intrusion Identification Using a GRT-Transformer-Based Distributed Acoustic Sensing (DAS) System. Informatics 2025, 12, 75. [Google Scholar] [CrossRef]
- Nie, T.; Guo, Z.; Zhao, K.; Lu, Z.-M. Using mapping entropy to identify node centrality in complex networks. Phys. A Stat. Mech. Its Appl. 2016, 453, 290–297. [Google Scholar] [CrossRef]
- Silva, F.N.; da Fontoura Costa, L. Local Dimension of Complex Networks. arXiv 2012, arXiv:1209.2476. [Google Scholar]
- Chen, D.; Mei, M.; Jiang, J.; Wang, C. A segmented fractal model associated with the spatial distribution characteristics of urban rail transit network. Chaos Solitons Fractals 2025, 194, 116113. [Google Scholar] [CrossRef]
- Li, S.; Xiao, F. The identification of crucial spreaders in complex networks by effective gravity model. Inf. Sci. 2021, 578, 725–749. [Google Scholar] [CrossRef]
- Guo, C.; Yang, L.; Chen, X.; Chen, D.; Ma, J. Influential Nodes Identification in Complex Networks via Information Entropy. Entropy 2020, 22, 242. [Google Scholar] [CrossRef] [PubMed]
- Lusseau, D.; Schneider, K.; Boisseau, O.; Haase, P.A.; Slooten, E.; Dawson, S.M. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 2003, 54, 396–405. [Google Scholar] [CrossRef]
- Colizza, V.; Pastor-Satorras, R.; Vespignani, A. Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 2007, 3, 276–282. [Google Scholar] [CrossRef]
- Ullah, A.; Shao, J.; Yang, Q.; Khan, N.; Bernard, C.M.; Kumar, R. LSS: A locality-based structure system to evaluate the spreader’s importance in social complex networks. Expert Syst. Appl. 2023, 228, 120326. [Google Scholar] [CrossRef]
- Sun, L.; Lu, P. TECNN: Identification of key nodes in complex networks based on transformer encoder and Convolutional Neural Network. J. Comput. Sci. 2025, 91, 102632. [Google Scholar] [CrossRef]
- Zhang, G. Research on community detection methods based on network structure. J. Xihua Univ. 2024. [Google Scholar] [CrossRef]
- An, Z.; Hu, X.; Jiang, R.; Jiang, Y. A novel method for identifying key nodes in multi-layer networks based on dynamic influence range and community importance. Knowl.-Based Syst. 2024, 305, 112639. [Google Scholar] [CrossRef]
- Ioannidis, E.; Dadakas, D.; Angelidis, G. Shock Propagation and the Geometry of International Trade: The US–China Trade Bipolarity in the Light of Network Science. Mathematics 2025, 13, 838. [Google Scholar] [CrossRef]
Network | ||||||
---|---|---|---|---|---|---|
ER | 650 | 2138 | 7 | 17 | 3.643 | 7 |
Dolphins | 62 | 159 | 5 | 12 | 3.303 | 8 |
USAir | 332 | 2126 | 12 | 139 | 2.730 | 6 |
Dublin Infection | 410 | 2765 | 13 | 50 | 3.622 | 9 |
1133 | 5451 | 9 | 71 | 3.603 | 8 | |
Hamster | 2423 | 16630 | 13 | 273 | 3.586 | 10 |
Rank | ER | Dolphins | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNEFLD-SM | DC | BC | CC | LSS | BE | HV | FLD | SNEFLD-SM | DC | BC | CC | LSS | BE | HV | FLD | |
1 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 511 | 38 | 15 | 37 | 37 | 37 | 37 | 15 | 38 |
2 | 393 | 394 | 393 | 393 | 393 | 393 | 394 | 61 | 18 | 38 | 2 | 38 | 21 | 38 | 46 | 21 |
3 | 394 | 393 | 394 | 394 | 394 | 394 | 393 | 35 | 21 | 46 | 41 | 21 | 30 | 2 | 38 | 15 |
4 | 468 | 286 | 468 | 286 | 351 | 468 | 286 | 126 | 58 | 52 | 38 | 15 | 2 | 41 | 34 | 37 |
5 | 511 | 465 | 511 | 351 | 465 | 286 | 465 | 164 | 41 | 34 | 8 | 52 | 15 | 21 | 21 | 41 |
6 | 286 | 482 | 286 | 428 | 598 | 598 | 482 | 621 | 52 | 18 | 18 | 2 | 51 | 18 | 58 | 34 |
7 | 465 | 425 | 425 | 465 | 511 | 425 | 351 | 568 | 14 | 58 | 21 | 30 | 41 | 15 | 14 | 51 |
8 | 425 | 351 | 598 | 511 | 468 | 465 | 598 | 213 | 48 | 21 | 55 | 18 | 38 | 55 | 30 | 46 |
9 | 103 | 511 | 465 | 103 | 10 | 482 | 425 | 391 | 54 | 30 | 52 | 41 | 44 | 52 | 41 | 44 |
10 | 351 | 468 | 634 | 468 | 428 | 511 | 468 | 582 | 50 | 41 | 58 | 44 | 25 | 58 | 52 | 19 |
JC | \ | 0.818 | 0.667 | 0.818 | 0.539 | 0.667 | 0.667 | 0.111 | \ | 0.429 | 0.429 | 0.333 | 0.177 | 0.429 | 0.429 | 0.177 |
Rank | USAir | Dublin Infection | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNEFLD-SM | DC | BC | CC | LSS [28] | BE | HV | FLD | SNEFLD-SM | DC | BC | CC | LSS | BE | HV | FLD | |
1 | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 118 | 157 | 157 | 274 | 157 | 148 | 157 | 148 | 274 |
2 | 261 | 261 | 8 | 261 | 261 | 261 | 261 | 261 | 304 | 304 | 304 | 304 | 157 | 304 | 372 | 157 |
3 | 182 | 255 | 261 | 182 | 255 | 182 | 255 | 67 | 274 | 148 | 157 | 274 | 274 | 274 | 157 | 333 |
4 | 255 | 152 | 201 | 255 | 152 | 255 | 182 | 255 | 243 | 372 | 243 | 333 | 205 | 243 | 304 | 1 |
5 | 152 | 182 | 47 | 201 | 182 | 201 | 166 | 201 | 333 | 282 | 333 | 148 | 223 | 333 | 286 | 243 |
6 | 201 | 230 | 182 | 152 | 230 | 152 | 152 | 182 | 148 | 217 | 30 | 372 | 304 | 148 | 60 | 150 |
7 | 67 | 166 | 255 | 67 | 166 | 47 | 230 | 166 | 372 | 314 | 212 | 243 | 193 | 372 | 318 | 305 |
8 | 230 | 67 | 152 | 166 | 112 | 67 | 67 | 47 | 30 | 333 | 148 | 305 | 239 | 30 | 116 | 205 |
9 | 47 | 112 | 313 | 230 | 67 | 230 | 112 | 248 | 212 | 286 | 297 | 1 | 282 | 282 | 291 | 314 |
10 | 166 | 201 | 13 | 47 | 147 | 166 | 147 | 112 | 314 | 60 | 218 | 217 | 243 | 314 | 217 | 337 |
JC | \ | 0.818 | 0.539 | 1.000 | 0.667 | 1.000 | 0.667 | 0.667 | \ | 0.429 | 0.667 | 0.539 | 0.333 | 0.818 | 0.250 | 0.333 |
Rank | Hamster | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNEFLD-SM | DC | BC | CC | LSS | BE | HV | FLD | SNEFLD-SM | DC | BC | CC | LSS | BE | HV | FLD | |
1 | 105 | 105 | 333 | 23 | 233 | 105 | 105 | 333 | 73 | 73 | 73 | 73 | 73 | 73 | 73 | 69 |
2 | 333 | 333 | 105 | 333 | 135 | 333 | 333 | 23 | 121 | 121 | 6 | 69 | 121 | 121 | 121 | 131 |
3 | 23 | 16 | 23 | 105 | 578 | 23 | 23 | 42 | 69 | 301 | 69 | 121 | 301 | 69 | 301 | 73 |
4 | 42 | 23 | 578 | 135 | 23 | 42 | 16 | 105 | 6 | 202 | 121 | 202 | 189 | 6 | 202 | 136 |
5 | 41 | 42 | 76 | 233 | 333 | 76 | 42 | 76 | 301 | 6 | 13 | 240 | 202 | 301 | 69 | 66 |
6 | 233 | 41 | 233 | 578 | 76 | 41 | 41 | 468 | 202 | 69 | 301 | 6 | 313 | 202 | 6 | 622 |
7 | 76 | 196 | 135 | 41 | 52 | 233 | 233 | 41 | 66 | 189 | 66 | 301 | 6 | 66 | 313 | 617 |
8 | 578 | 233 | 41 | 42 | 105 | 578 | 196 | 233 | 13 | 313 | 21 | 66 | 69 | 13 | 622 | 612 |
9 | 135 | 21 | 355 | 378 | 332 | 135 | 76 | 52 | 21 | 622 | 159 | 242 | 84 | 21 | 617 | 121 |
10 | 355 | 76 | 42 | 52 | 183 | 16 | 354 | 378 | 189 | 617 | 2 | 13 | 622 | 622 | 189 | 13 |
JC | \ | 0.539 | 1.000 | 0.667 | 0.539 | 0.818 | 0.539 | 0.539 | \ | 0.539 | 0.666 | 0.666 | 0.539 | 0.818 | 0.539 | 0.333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Huang, X.; Li, Z.; Jiang, W. Enhanced Key Node Identification in Complex Networks Based on Fractal Dimension and Entropy-Driven Spring Model. Entropy 2025, 27, 911. https://doi.org/10.3390/e27090911
Zhou Z, Huang X, Li Z, Jiang W. Enhanced Key Node Identification in Complex Networks Based on Fractal Dimension and Entropy-Driven Spring Model. Entropy. 2025; 27(9):911. https://doi.org/10.3390/e27090911
Chicago/Turabian StyleZhou, Zhaoliang, Xiaoli Huang, Zhaoyan Li, and Wenbo Jiang. 2025. "Enhanced Key Node Identification in Complex Networks Based on Fractal Dimension and Entropy-Driven Spring Model" Entropy 27, no. 9: 911. https://doi.org/10.3390/e27090911
APA StyleZhou, Z., Huang, X., Li, Z., & Jiang, W. (2025). Enhanced Key Node Identification in Complex Networks Based on Fractal Dimension and Entropy-Driven Spring Model. Entropy, 27(9), 911. https://doi.org/10.3390/e27090911