Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies
Abstract
1. Introduction
2. Methods
3. Results
3.1. fMRI Data
3.2. HeLa Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Everitt, S. An Introduction to Latent Variable Model; Chapman and Hall: London, UK, 1984. [Google Scholar]
- Carrol, J.B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Stevens, J.P. Applied Multivariate Statistics for the Social Sciences; Psychology Press: London, UK, 2002. [Google Scholar]
- Harman, H.H. Modern Factor Analysis; The University of Chicago Press: Chicago, IL, USA, 1976. [Google Scholar]
- Love, D.; Hallbauer, D.K.; Amos, A.; Hranova, R.K. Factor analysis as a tool in groundwater quality management: Two southern African case studies. Phys. Chem. Earth 2004, 29, 1135. [Google Scholar] [CrossRef]
- Stewart, D.W. The application and misapplication of factor analysis in marketing research. J. Mark. Res. 1981, 18, 51. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Wall, M.E.; Rechtsteiner, A.; Rocha, L. Singular value decomposition and principal component analysis. In A Practical Approach to Microarray Data Analysis; Berrar, D., Dubitzky, W., Granzow, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 91–109. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B 1999, 21, 611. [Google Scholar] [CrossRef]
- Williams, P.L.; Beer, R.D. Nonnegative decomposition of multivariate information. arXiv 2010, arXiv:1004.2515. [Google Scholar] [CrossRef]
- Rosas, F.E.; Mediano, P.A.M.; Gastpar, M.; Jensen, H.J. Quantifying high-order interdependencies via multivariate extensions of the mutual information. Phys. Rev. E 2019, 100, 032305. [Google Scholar] [CrossRef]
- Luppi, A.I.; Rosas, F.E.; Mediano, P.A.; Menon, D.K.; Stamatakis, E.A. Information decomposition and the informational architecture of the brain. Trends Cogn. Sci. 2024, 28, 352–368. [Google Scholar] [CrossRef]
- Gehlen, J.; Li, J.; Hourican, C.; Tassi, S.; Mishra, P.P.; Lehtimäki, T.; Kähönen, M.; Raitakari, O.; Bosch, J.A.; Quax, R. Bias in O-Information Estimation. Entropy 2024, 26, 837. [Google Scholar] [CrossRef] [PubMed]
- Scagliarini, T.; Nuzzi, D.; Antonacci, Y.; Faes, L.; Rosas, F.E.; Marinazzo, D.; Stramaglia, S. Gradients of O-information: Low-order descriptors of high-order dependencies. Phys. Rev. Res. 2023, 5, 013025. [Google Scholar] [CrossRef]
- Gut, A. An Intermediate Course in Probability; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hyvärinen, A.; Hurri, J.; Hoyer, P.O. Independent Component Analysis. In Natural Image Statistics. Computational Imaging and Vision; Springer: London, UK, 2009; Volume 39. [Google Scholar]
- Poldrack, R.A.; Congdon, E.; Triplett, W.; Gorgolewski, K.J.; Karlsgodt, K.H.; Mumford, J.A.; Sabb, F.W.; Freimer, N.B.; London, E.D.; Cannon, T.D.; et al. A phenome-wide examination of neural and cognitive function. Sci. Data 2016, 3, 160110. [Google Scholar] [CrossRef]
- Sannino, S.; Stramaglia, S.; Lacasa, L.; Marinazzo, D. Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks. Netw. Neurosci. 2017, 1, 208–221. [Google Scholar] [CrossRef]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. NeuroImage 2012, 62, 782–790. [Google Scholar] [CrossRef]
- Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef]
- Luppi, A.I.; Mediano, P.A.; Rosas, F.E.; Holland, N.; Fryer, T.D.; O’Brien, J.T.; Rowe, J.B.; Menon, D.K.; Bor, D.; Stamatakis, E.A. A synergistic core for human brain evolution and cognition. Nat. Neurosci. 2022, 25, 771–782. [Google Scholar] [CrossRef]
- Scagliarini, T.; Sparacino, L.; Faes, L.; Marinazzo, D.; Stramaglia, S. Gradients of O-information highlight synergy and redundancy in physiological applications. Front. Netw. Physiol. 2024, 3, 1335808. [Google Scholar] [CrossRef] [PubMed]
- Varley, T.F.; Pope, M.; Faskowitz, J.; Sporns, O. Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex. Commun. Biol. 2023, 6, 451. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, M.L.; Sherlock, G.; Saldanha, A.J.; Murray, J.I.; Ball, C.A.; Alexander, K.E.; Matese, J.C.; Perou, C.M.; Hurt, M.M.; Brown, P.O. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 2002, 13, 1977. [Google Scholar] [CrossRef]
- Hoerl, A.R.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55. [Google Scholar] [CrossRef]
- Zamparo, M.; Stramaglia, S.; Banavar, J.R.; Maritan, A. Inverse problem for multivariate time series using dynamical latent variables. Physica A 2012, 391, 3159–3169. [Google Scholar] [CrossRef]
- Lin, L.; Wang, S.; Li, X.; He, Q.; Benz, J.P.; Tian, C. STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa. PLoS Genet. 2019, 15, e1008510. [Google Scholar] [CrossRef]
- Tang, J.; Gautam, P.; Gupta, A.; He, L.; Timonen, S.; Akimov, Y.; Wang, W.; Szwajda, A.; Jaiswal, A.; Turei, D.; et al. Network pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast cancer. NPJ Syst. Biol. Appl. 2019, 5, 20. [Google Scholar] [CrossRef]
- Hwang, E.J.; Sato, T.R.; Sato, T.K. A canonical scheme of bottom-up and top-down information flows in the frontoparietal network. Front. Neural Circuits 2021, 15, 691314. [Google Scholar] [CrossRef] [PubMed]
- Rosas, F.E.; Mediano, P.A.; Luppi, A.I.; Varley, T.F.; Lizier, J.T.; Stramaglia, S.; Jensen, H.J.; Marinazzo, D. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 2022, 18, 476–477. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ontivero-Ortega, M.; Mijatovic, G.; Faes, L.; Rosas, F.E.; Marinazzo, D.; Stramaglia, S. Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies. Entropy 2025, 27, 820. https://doi.org/10.3390/e27080820
Ontivero-Ortega M, Mijatovic G, Faes L, Rosas FE, Marinazzo D, Stramaglia S. Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies. Entropy. 2025; 27(8):820. https://doi.org/10.3390/e27080820
Chicago/Turabian StyleOntivero-Ortega, Marlis, Gorana Mijatovic, Luca Faes, Fernando E. Rosas, Daniele Marinazzo, and Sebastiano Stramaglia. 2025. "Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies" Entropy 27, no. 8: 820. https://doi.org/10.3390/e27080820
APA StyleOntivero-Ortega, M., Mijatovic, G., Faes, L., Rosas, F. E., Marinazzo, D., & Stramaglia, S. (2025). Localizing Synergies of Hidden Factors in Complex Systems: Resting Brain Networks and HeLa GeneExpression Profile as Case Studies. Entropy, 27(8), 820. https://doi.org/10.3390/e27080820