Compressed Adaptive-Sampling-Rate Image Sensing Based on Overcomplete Dictionary
Abstract
1. Introduction
1.1. Motivation
1.2. Related Works
1.3. Proposed Work
- An adaptive residual energy hard-threshold classification method based on an overcomplete dictionary is proposed. This method is independent of the original signal as well as its prior statistics and has a simple implementation process and a fast calculation speed.
- We developed a dictionary partition method. By partitioning the dictionary, the method significantly boosts both the speed and the accuracy of image block classification, thereby enhancing the image reconstruction quality.
2. Methodological Background
2.1. Block Compressed Sensing
2.2. Compressed Sensing Based on Overcomplete Dictionary
2.3. Discrete Overcomplete Ridgelet Dictionary
3. Adaptive Rate Method
3.1. Identification of Smooth Blocks and Texture Blocks
3.2. Block Classification in Compressed Domain
Algorithm 1 Classification algorithm |
Input: : smooth compressed dictionary. : measurement value of image : the number of iterations of the algorithm. Initialization: while do ; ; ; ; end Output: : the residual energy of the -th block’s image |
3.3. Adaptive Rate Allocation
3.4. Reconstruction
4. Experiments
4.1. Parameter Settings
4.2. Simulation Results
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masoum, A.; Meratnia, N.; Havinga, P.J.M. Compressive Sensing Based Data Collection in Wireless Sensor Networks. In Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Republic of Korea, 16–18 November 2017; pp. 442–447. [Google Scholar]
- Hsieh, S.-H.; Liang, W.-J.; Lu, C.-S.; Pei, S.-C. Distributed Compressive Sensing: Performance Analysis with Diverse Signal Ensembles. IEEE Trans. Signal Process. 2020, 68, 3500–3514. [Google Scholar] [CrossRef]
- Lin, W.; Dong, L. Adaptive Downsampling to Improve Image Compression at Low Bit Rates. IEEE Trans. Image Process. 2006, 15, 2513–2521. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zeng, B.; Gabbouj, M. Adaptive Reweighted Compressed Sensing for Image Compression. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; pp. 1–4. [Google Scholar]
- Zhang, J.; Xiang, Q.; Yin, Y.; Chen, C.; Luo, X. Adaptive Compressed Sensing for Wireless Image Sensor Networks. Multimed. Tools Appl. 2017, 76, 4227–4242. [Google Scholar] [CrossRef]
- Monika, R.; Dhanalakshmi, S. An Optimal Adaptive Reweighted Sampling-Based Adaptive Block Compressed Sensing for Underwater Image Compression. Vis. Comput. 2024, 40, 4071–4084. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, B.; Zhang, L. Saliency-Based Compressive Sampling for Image Signals. IEEE Signal Process. Lett. 2010, 17, 973–976. [Google Scholar] [CrossRef]
- Li, R.; Duan, X.; He, W.; You, L. Entropy-Assisted Adaptive Compressive Sensing for Energy-Efficient Visual Sensors. Multimed. Tools Appl. 2020, 79, 20821–20843. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef]
- Li, R.; He, W.; Liu, Z.; Li, Y.; Fu, Z. Saliency-Based Adaptive Compressive Sampling of Images Using Measurement Contrast. Multimed. Tools Appl. 2018, 77, 12139–12156. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Zhang, Y.; Xia, J.; Zeng, X. Adaptive Compressed Sampling Based on EMD for Wireless Sensor Networks. IEEE Sens. J. 2023, 23, 2577–2591. [Google Scholar] [CrossRef]
- Wang, W.; Jin, X.; Quan, D.; Zhu, M.; Wang, X.; Zheng, M.; Li, J.; Chen, J. Rate Adaptive Compressed Sampling Based on Region Division for Wireless Sensor Networks. Sci. Rep. 2024, 14, 29666. [Google Scholar] [CrossRef]
- Song, Z.; Chen, J. Adaptive Rate Compression for Distributed Video Sensing in Wireless Visual Sensor Networks. Vis. Comput. 2025. [Google Scholar] [CrossRef]
- Unde, A.S.; Pattathil, D.P. Adaptive Compressive Video Coding for Embedded Camera Sensors: Compressed Domain Motion and Measurements Estimation. IEEE Trans. Mob. Comput. 2020, 19, 2250–2263. [Google Scholar] [CrossRef]
- Gan, L. Block Compressed Sensing of Natural Images. In Proceedings of the 2007 15th International Conference on Digital Signal Processing, Cardiff, UK, 1–4 July 2007; pp. 403–406. [Google Scholar]
- Olshausen, B.A.; Field, D.J. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef] [PubMed]
- Olshausen, B.A.; Field, D.J. Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature 1996, 381, 607–609. [Google Scholar] [CrossRef]
- Figueras i Ventura, R.M.; Vandergheynst, P.; Frossard, P. Low-Rate and Flexible Image Coding with Redundant Representations. IEEE Trans. Image Process. 2006, 15, 726–739. [Google Scholar] [CrossRef]
- Donoho, D.L.; Elad, M. Optimally Sparse Representation in General (Nonorthogonal) Dictionaries via ℓ1 Minimization. Proc. Natl. Acad. Sci. USA 2003, 100, 2197–2202. [Google Scholar] [CrossRef]
- Randall, P.A. Sparse Recovery via Convex Optimization; California Institute of Technology: Pasadena, CA, USA, 2009. [Google Scholar]
- Candès, J.E.; Eldar, C.Y.; Needel, D.; Randall, P. Compressed Sensing with Coherent and Redundant Dictionaries. Appl. Comput. Harmon. Anal. 2011, 31, 59–73. [Google Scholar] [CrossRef]
- Jin, S.; Sun, W.; Huang, L. Joint Optimization Methods for Gaussian Random Measurement Matrix Based on Column Coherence in Compressed Sensing. Signal Process. 2023, 207, 108941. [Google Scholar] [CrossRef]
- Yang, C.; Pan, P.; Ding, Q. Image Encryption Scheme Based on Mixed Chaotic Bernoulli Measurement Matrix Block Compressive Sensing. Entropy 2022, 24, 273. [Google Scholar] [CrossRef]
- Tausiesakul, B. Basis Pursuit and Linear Programming Equivalence: A Performance Comparison in Sparse Signal Recovery. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 5–8 July 2022; pp. 1–6. [Google Scholar]
- Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597. [Google Scholar] [CrossRef]
- Lin, L.; Liu, F.; Jiao, L.; Yang, S.; Hao, H. The Overcomplete Dictionary-Based Directional Estimation Model and Nonconvex Reconstruction Methods. IEEE Trans. Cybern. 2018, 48, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liu, F.; Jiao, L. Compressed Sensing by Collaborative Reconstruction on Overcomplete Dictionary. Signal Process. 2014, 103, 92–102. [Google Scholar] [CrossRef]
- Begovic, B. Dictionary Learning for Scalable Sparse Image Representation. Adv. Signal Process. 2014, 2, 55–74. [Google Scholar] [CrossRef]
- Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. In Proceedings of the Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–3 November 1993; pp. 40–44. [Google Scholar]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Van Den Berg, E.; Friedlander, M.P. Probing the Pareto Frontier for Basis Pursuit Solutions. SIAM J. Sci. Comput. 2009, 31, 890–912. [Google Scholar] [CrossRef]
- Van Den Berg, E.; Friedlander, M.P. Sparse Optimization with Least-Squares Constraints. SIAM J. Optim. 2011, 21, 1201–1229. [Google Scholar] [CrossRef]
Method | Original Image Dependence | Computational Cost | Reconstruction Quality |
---|---|---|---|
ABCS-RW [4] | Yes | Medium | High |
STD-BCS-SPL [5] | Yes | Low | Low |
ABCS-ARS [6] | Yes | Medium | Medium |
ABCS-SD [7] | Yes | Low | Medium |
ABCS-Entropy [8] | No | High | Medium |
ABCS-MC [10] | No | Medium | Medium |
Zigzag EMD [11] | No | High | Medium |
ABCS-IRD [12] | No | Medium | Medium |
1 | 0.1 | 4 | 0.01 |
23 | 240 | 15 |
Images | Methods | Sampling Rates | ||||
---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | ||
Lena | BCS | 23.00 | 26.40 | 28.75 | 30.93 | 32.90 |
ABCS-SD | 21.43 | 26.42 | 29.10 | 31.27 | 33.75 | |
ABCS-MC | 24.93 | 28.23 | 30.58 | 32.59 | 34.16 | |
ABCS-Entropy | 26.04 | 29.03 | 31.16 | 32.93 | 34.45 | |
Proposed | 27.88 | 32.12 | 34.49 | 36.02 | 37.30 | |
Barbara | BCS | 21.16 | 23.95 | 26.14 | 28.18 | 30.31 |
ABCS-SD | 19.70 | 23.88 | 26.02 | 28.29 | 30.72 | |
ABCS-MC | 21.78 | 24.28 | 26.19 | 28.23 | 29.99 | |
ABCS-Entropy | 22.39 | 24.33 | 26.56 | 28.57 | 30.64 | |
Proposed | 22.43 | 25.14 | 27.60 | 30.12 | 32.78 | |
Peppers | BCS | 22.13 | 25.89 | 28.47 | 30.51 | 32.32 |
ABCS-SD | 20.04 | 25.99 | 28.59 | 30.59 | 32.48 | |
ABCS-MC | 23.84 | 27.18 | 29.00 | 30.62 | 32.24 | |
ABCS-Entropy | 23.87 | 26.55 | 28.00 | 29.56 | 30.87 | |
Proposed | 27.40 | 31.40 | 33.01 | 34.07 | 34.93 | |
Goldhill | BCS | 23.07 | 25.61 | 27.56 | 29.25 | 30.94 |
ABCS-SD | 21.64 | 25.74 | 27.79 | 29.56 | 31.50 | |
ABCS-MC | 23.10 | 25.96 | 27.54 | 29.14 | 30.52 | |
ABCS-Entropy | 24.56 | 26.18 | 27.64 | 29.17 | 30.73 | |
Proposed | 26.38 | 28.95 | 30.62 | 32.23 | 33.73 | |
Cameraman | BCS | 21.55 | 25.83 | 29.07 | 32.37 | 35.82 |
ABCS-SD | 20.19 | 25.68 | 29.07 | 32.44 | 36.04 | |
ABCS-MC | 24.60 | 28.99 | 32.40 | 35.99 | 38.71 | |
ABCS-Entropy | 24.12 | 27.76 | 29.88 | 31.74 | 33.12 | |
Proposed | 27.82 | 35.59 | 40.23 | 42.21 | 44.52 | |
Pirate | BCS | 21.53 | 24.28 | 26.14 | 27.87 | 29.56 |
ABCS-SD | 20.43 | 24.33 | 26.29 | 28.07 | 29.96 | |
ABCS-MC | 22.54 | 25.30 | 27.15 | 28.75 | 30.35 | |
ABCS-Entropy | 23.93 | 26.16 | 27.93 | 29.52 | 31.17 | |
Proposed | 25.45 | 28.48 | 30.42 | 32.03 | 33.53 | |
Luna | BCS | 25.42 | 29.33 | 31.98 | 34.35 | 36.75 |
ABCS-SD | 23.42 | 29.28 | 31.97 | 34.56 | 37.30 | |
ABCS-MC | 27.37 | 31.07 | 33.63 | 35.87 | 37.80 | |
ABCS-Entropy | 27.19 | 29.71 | 31.57 | 33.28 | 34.95 | |
Proposed | 31.10 | 36.47 | 39.34 | 41.06 | 42.14 | |
Heron | BCS | 24.55 | 27.13 | 29.02 | 30.79 | 32.44 |
ABCS-SD | 23.27 | 27.18 | 28.97 | 30.86 | 32.57 | |
ABCS-MC | 25.88 | 28.56 | 30.66 | 32.41 | 34.09 | |
ABCS-Entropy | 26.42 | 28.66 | 30.23 | 31.74 | 33.20 | |
Proposed | 28.05 | 30.63 | 32.22 | 33.39 | 34.47 |
Images | Methods | Sampling Rates | ||||
---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | ||
Lena | BCS | 20.19 | 23.58 | 25.89 | 27.83 | 29.90 |
ABCS-SD | 18.92 | 23.19 | 25.85 | 28.12 | 30.80 | |
ABCS-MC | 22.32 | 25.73 | 28.13 | 30.25 | 32.21 | |
ABCS-Entropy | 23.55 | 26.25 | 28.40 | 30.30 | 32.23 | |
Proposed | 25.01 | 28.63 | 31.00 | 33.61 | 35.41 | |
Heron | BCS | 23.20 | 25.45 | 27.42 | 29.30 | 31.17 |
ABCS-SD | 22.30 | 25.54 | 27.43 | 29.35 | 31.28 | |
ABCS-MC | 24.31 | 27.17 | 29.25 | 31.33 | 33.38 | |
ABCS-Entropy | 25.08 | 27.01 | 28.63 | 30.12 | 31.49 | |
Proposed | 26.68 | 29.60 | 31.79 | 33.55 | 35.31 | |
Goldhill | BCS | 21.26 | 24.00 | 26.18 | 28.24 | 30.14 |
ABCS-SD | 20.29 | 24.51 | 26.42 | 28.47 | 30.66 | |
ABCS-MC | 22.18 | 25.06 | 27.02 | 28.68 | 30.07 | |
ABCS-Entropy | 23.38 | 24.92 | 26.24 | 27.69 | 29.21 | |
Proposed | 25.24 | 28.07 | 30.19 | 32.17 | 34.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, D.; Yang, Q.; Peng, Y. Compressed Adaptive-Sampling-Rate Image Sensing Based on Overcomplete Dictionary. Entropy 2025, 27, 709. https://doi.org/10.3390/e27070709
Wang J, Li D, Yang Q, Peng Y. Compressed Adaptive-Sampling-Rate Image Sensing Based on Overcomplete Dictionary. Entropy. 2025; 27(7):709. https://doi.org/10.3390/e27070709
Chicago/Turabian StyleWang, Jianming, Dingpeng Li, Qingqing Yang, and Yi Peng. 2025. "Compressed Adaptive-Sampling-Rate Image Sensing Based on Overcomplete Dictionary" Entropy 27, no. 7: 709. https://doi.org/10.3390/e27070709
APA StyleWang, J., Li, D., Yang, Q., & Peng, Y. (2025). Compressed Adaptive-Sampling-Rate Image Sensing Based on Overcomplete Dictionary. Entropy, 27(7), 709. https://doi.org/10.3390/e27070709