Landauer Principle and Einstein Synchronization of Clocks: Ramsey Approach
Abstract
1. Introduction
2. Results
2.1. Synchronization of Clocks Operating at the Same Temperature
2.2. Mechanical Synchronization of the Clocks Operating at the Same Temperature
2.3. Energy Dissipation Within the Eddington Slow Transport of Clocks Mechanism of Synchronization
2.4. Synchronization of Clocks Operating at Different Temperatures
2.5. Lattice of Clocks and Its Converting into Bi-Colored Graphs
- (i)
- The synchronization of the lattice of clocks may be treated within the Ramsey approach.
- (ii)
- The pair of clocks within the lattice is seen as “synchronized” or “non-synchronized”. This gives rise to the complete, bi-colored Ramsey graph.
- (iii)
- The lattice built of six clocks necessarily inevitably contains a triad/loop of synchronized, or, alternatively, non-synchronized clocks.
2.6. The Landauer Limit and Accuracy of the Synchronization of the Clocks
3. Discussion
- (i)
- (ii)
- Both use regular oscillations. A quartz clock uses regular electrical oscillations to keep accurate time. A computer’s CPU has a clock signal generated by a crystal oscillator that ensures each operation is synchronized—kind of like a metronome for processing.
- (iii)
- (iv)
- Information processing: clocks and computers both are information processing devices.
- (v)
- Both systems move through a discrete sequence of states.
- (vi)
- Multiple clocks (e.g., connected in a network) need synchronization for accurate timekeeping. This problem was solved by Einstein, with the procedure of synchronization exploiting the constancy of the light in vacuum. Computers also need synchronized clocks across components (CPU, RAM, and buses) to ensure proper data flow and processing.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, A.A. Material History and Imaginary Clocks: Poincaré, Einstein, and Galison on Simultaneity. Phys. Perspect. 2004, 6, 224–240. [Google Scholar] [CrossRef]
- Galison, P. Einstein’s Clocks and Poincaré’s Maps: Empires of Time, Critical Inquiry; W. W. Norton & Company: New York, NY, USA, 2000; Volume 26, pp. 355–389. [Google Scholar]
- Kapitaniak, M.; Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T. Synchronization of clocks. Phys. Rep. 2012, 517, 1–69. [Google Scholar] [CrossRef]
- Oliveira, H.; Melo, L. Huygens synchronization of two clocks. Sci. Rep. 2015, 5, 11548. [Google Scholar] [CrossRef]
- DiSalle, R. Understanding Space-Time: The Philosophical Development of Physics from Newton to Einstein; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- DiSalle, R. Absolute space and Newton’s theory of relativity. Stud. Hist. Philos. Sci. 2020, 71, 232–244. [Google Scholar] [CrossRef]
- Bussotti, P.; Lotti, B. Newton and His System of the World. In Cosmology in the Early Modern Age: A Web of Ideas. Logic, Epistemology, and the Unity of Science; Springer: Cham, Switzerland, 2022; Volume 56. [Google Scholar]
- Landau, L.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1975; Volume 2. [Google Scholar]
- Tolman, R.C. Relativity, Thermodynamics and Cosmology; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
- Resnick, R. Introduction to Special Relativity; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Bohm, D. The Special Theory of Relativity; Taylor & Francis: London, UK, 2025. [Google Scholar]
- Moller, C. The Theory of Relativity, 2nd ed.; Oxford University Press: Oxford, UK, 1952. [Google Scholar]
- Landauer, R. Dissipation and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183. [Google Scholar] [CrossRef]
- Landauer, R. Information is physical. Phys. Today 1991, 44, 23–29. [Google Scholar] [CrossRef]
- Landauer, R. Minimal energy requirements in communication. Science 1996, 272, 1914–1918. [Google Scholar] [CrossRef]
- Bennett, C.H.; Landauer, R. The fundamental physical limits of computation. Sci. Am. 1985, 253, 48–57. [Google Scholar] [CrossRef]
- Maroney, O.J.E. The (absence of a) relationship between thermodynamic and logical reversibility. Stud. Hist. Philos. Sci. B 2005, 36, 355–374. [Google Scholar] [CrossRef]
- Piechocinska, B. Information erasure. Phys. Rev. A 2000, 61, 062314. [Google Scholar] [CrossRef]
- Parrondo, J.M.R.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nature Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Sagawa, T. Thermodynamic and logical reversibilities revisited. J. Stat. Mech. 2014, 2014, P03025. [Google Scholar] [CrossRef]
- Herrera, L. The mass of a bit of information and the Brillouin’s principle. Fluct. Noise Lett. 2014, 13, 1450002. [Google Scholar] [CrossRef]
- Herrera, L. Landauer Principle and General Relativity. Entropy 2020, 22, 340. [Google Scholar] [CrossRef]
- Bormashenko, E. Generalization of the Landauer Principle for Computing Devices Based on Many-Valued Logic. Entropy 2019, 21, 1150. [Google Scholar] [CrossRef]
- Vopson, M. The mass-energy-information equivalence principle. AIP Adv. 2019, 9, 095206. [Google Scholar] [CrossRef]
- Müller, J.G. Events as Elements of Physical Observation: Experimental Evidence. Entropy 2024, 26, 255. [Google Scholar] [CrossRef]
- Bormashenko (Ed.) The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification? Entropy 2019, 21, 918. [Google Scholar] [CrossRef]
- Maroney, O.J.E. Generalizing Landauer’s principle. Phys. Rev. E 2009, 79, 031105. [Google Scholar] [CrossRef]
- Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. Europhys. Lett. 2011, 95, 40004. [Google Scholar] [CrossRef]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Lairez, D. Thermodynamical versus Logical Irreversibility: A Concrete Objection to Landauer’s Principle. Entropy 2023, 25, 1155. [Google Scholar] [CrossRef] [PubMed]
- Buffoni, L.; Campisi, M. Spontaneous Fluctuation-Symmetry Breaking and the Landauer Principle. J. Stat. Phys. 2022, 186, 31. [Google Scholar] [CrossRef]
- Bondy, J.A.; Murty, U.S. R Graph Theory; Springer: New York, NY, USA, 2008. [Google Scholar]
- Chartrand, G.; Chatterjee, P.; Zhang, P. Ramsey chains in graphs. Electron. J. Math. 2023, 6, 1–14. [Google Scholar] [CrossRef]
- Chartrand, G.; Zhang, P. New directions in Ramsey theory. Discrete Math. Lett. 2021, 6, 84–96. [Google Scholar]
- Graham, R.L.; Rothschild, B.L.; Spencer, J.H. Ramsey Theory, 2nd ed.; Wiley-Interscience Series in Discrete Mathematics and Optimization; John Wiley & Sons, Inc.: New York, NY, USA, 1990; pp. 10–110. [Google Scholar]
- Graham, R.; Butler, S. Rudiments of Ramsey Theory, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2015; pp. 7–46. [Google Scholar]
- Di Nasso, M.; Goldbring, I.; Lupini, M. Nonstandard Methods in Combinatorial Number Theory, Lecture Notes in Mathematics; Springer: Berlin, Germany, 2019; Volume 2239. [Google Scholar]
- Katz, M.; Reimann, J. Introduction to Ramsey Theory: Fast Functions, Infinity, and Metamathematics; Student Mathematical Library; American Mathematical Society: Providence, RI, USA, 2018; Volume 87, pp. 1–34. [Google Scholar]
- Bormashenko, E.d.; Shvalb, N. A Ramsey-Theory-Based Approach to the Dynamics of Systems of Material Points. Dynamics 2024, 4, 845–854. [Google Scholar] [CrossRef]
- Witkowski, K.; Brown, S.; Truong, K. On the Precise Link between Energy and Information. Entropy 2024, 26, 203. [Google Scholar] [CrossRef]
- Peña Ramirez, J.; Olvera, L.; Nijmeijer, H.; Alvarez, J. The sympathy of two pendulum clocks: Beyond Huygens’ observations. Sci. Rep. 2016, 6, 23580. [Google Scholar] [CrossRef]
- Peña Ramire, J.; Aihara, R.; Fey, R.H.B.; Nijmeijer, H. Further understanding of Huygens’ coupled clocks: The effect of stiffness. Phys. D 2014, 270, 11–19. [Google Scholar] [CrossRef]
- Blumenthal, A.S.; Nosonovsky, M. Friction and Dynamics of Verge and Foliot: How the Invention of the Pendulum Made Clocks Much More Accurate. Appl. Mech. 2020, 1, 111–122. [Google Scholar] [CrossRef]
- Feynman, R. The Feynman Lectures on Physics; Addison Wesley Publishing Co. Reading: Palo Alto, MA, USA, 1964; Volume 1, Chapter 6. [Google Scholar]
- Bormashenko, E. Physical and Logical Synchronization of Clocks: The Ramsey Approach. Foundations 2025, 5, 15. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, P. Zeroth law of thermodynamics and transitivity of simultaneity. Int. J. Theor. Phys. 1997, 36, 2153–2159. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Q. Elementary Methods of the Graph Theory; Applied Mathematical Sciences; Springer: Cham, Switzerland, 2020; pp. 3–44. [Google Scholar]
- Fixsen, D.J. The Temperature of the cosmic microwave background. Astrophys. J. 2009, 707, 916–920. [Google Scholar] [CrossRef]
- Hartnoll, S.A.; Mackenzie, A.P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 2022, 94, 041002. [Google Scholar] [CrossRef]
- Lamport, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 1978, 21, 558–565. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Demirbas, M.; Madappa, D.; Avva, B.; Leone, M. Logical Physical Clocks. In Principles of Distributed Systems, Proceedings of the 18th International Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, 16–19 December 2014; Lecture Notes in Computer Science; Aguilera, M.K., Querzoni, L., Shapiro, M., Eds.; Springer: Cham, Switzerland, 2014; Volume 8878. [Google Scholar]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 28–31 August 1989; pp. 354–368. [Google Scholar]
- Vopson, M. Is gravity evidence of a computational universe? AIP Adv. 2025, 15, 045035. [Google Scholar] [CrossRef]
- Vopson, M. The information catastrophe. AIP Adv. 2020, 10, 085014. [Google Scholar] [CrossRef]
- Bormashenko, E. Informational Reinterpretation of the Mechanics Notions and Laws. Entropy 2020, 22, 631. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bormashenko, E.; Nosonovsky, M. Landauer Principle and Einstein Synchronization of Clocks: Ramsey Approach. Entropy 2025, 27, 697. https://doi.org/10.3390/e27070697
Bormashenko E, Nosonovsky M. Landauer Principle and Einstein Synchronization of Clocks: Ramsey Approach. Entropy. 2025; 27(7):697. https://doi.org/10.3390/e27070697
Chicago/Turabian StyleBormashenko, Edward, and Michael Nosonovsky. 2025. "Landauer Principle and Einstein Synchronization of Clocks: Ramsey Approach" Entropy 27, no. 7: 697. https://doi.org/10.3390/e27070697
APA StyleBormashenko, E., & Nosonovsky, M. (2025). Landauer Principle and Einstein Synchronization of Clocks: Ramsey Approach. Entropy, 27(7), 697. https://doi.org/10.3390/e27070697