Nonlinear Dynamics and Applications
Acknowledgments
Conflicts of Interest
References
- Robinson, R.C. An Introduction to Dynamical Systems; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Datseris, G.; Parlitz, U. Nonlinear Dynamics; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Devaney, R.L. An Introduction to Chaotic Dynamical Systems, 2nd ed.; Westview Press: Boulder, CO, USA, 2003. [Google Scholar]
- Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Strogatz, S.H. Nonlinear Dynamics and Chaos, 2nd ed.; Westview Press: Boulder, CO, USA, 2015. [Google Scholar]
- May, R.M. Simple mathematical models with very complicacted dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Feigenbaum, M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 1978, 19, 25–52. [Google Scholar] [CrossRef]
- Gleick, J. Chaos: Making a New Science; Viking Books: New York, NY, USA, 1987. [Google Scholar]
- Peitgen, H.O.; Jürgen, H.; Saupe, D. Chaos and Fractals; Springer: New York, NY, USA, 1992. [Google Scholar]
- Poincaré, H. Sur le problème des trois corps et les équations de la dynamique. Acta Math. 1890, 13, A3–A270. [Google Scholar]
- Barrow-Green, J. Poincare and the Three Body Problem; History of Mathematics; American Mathematical Society: Providence, RI, USA, 1996; Volume 11. [Google Scholar]
- Lyapunov, A.M. The general problem of the stability of motion. Int. J. Control 1992, 55, 531–773. [Google Scholar] [CrossRef]
- Birkhoff, G.D. Proof of the Ergodic Theorem. Proc. Natl. Acad. Sci. USA 1931, 17, 656–660. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Entropy per unit time as a metric invariant of automorphisms. Dokl. Russ. Acad. Sci. USA 1959, 124, 754–755. [Google Scholar]
- Shilnikov, L.P.; Shilnikov, A.L.; Turaev, D.V.; Chua, L.O. Methods of Qualitative Theory in Nonlinear Dynamics, Part I; World Scientific: Singapore, 1998. [Google Scholar]
- Shilnikov, L.P.; Shilnikov, A.L.; Turaev, D.V.; Chua, L.O. Methods of Qualitative Theory in Nonlinear Dynamics, Part 2; World Scientific: Singapore, 1998. [Google Scholar]
- Takens, F. Detecting strange attractors in turbulence, In Dynamical Systems and Turbulence; Rand, D., Young, L.S., Eds.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, pp. 366–381. [Google Scholar]
- Hayashi, C. Nonlinear Oscillations in Physical Systems; Princeton University Press: Princeton, NJ, USA, 1964. [Google Scholar]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Rev. Phys. Lett. 1990, 64, 821–824. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology I: An Introduction; Springer: New York, NY, USA, 2002. [Google Scholar]
- Murray, J.D. Mathematical Biology II: Spatial Models and Biomedical Applications: An Introduction; Springer: New York, NY, USA, 2002. [Google Scholar]
- Amigó, J.M.; Small, M. Mathematical methods in medicine: Neuroscience, cardiology and pathology. Philos. Trans. R. Soc. A 2017, 375, 20170016. [Google Scholar] [CrossRef]
- Van der Pohl, B.; van der Mark, J. Frequency demultiplication. Nature 1927, 120, 363–364. [Google Scholar] [CrossRef]
- Chua, L.O.; Matsumoto, T.; Komuro, M. The Double Scroll. IEEE Trans. Circuits Syst. 1985, 32, 798–818. [Google Scholar]
- De Gooijer, J.G. Elements of Nonlinear Time Series Analysis and Forecasting; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Amigó, J.M.; Kocarev, L.; Szczepanski, J. Theory and Practice of Chaotic Cryptography. Phys. Lett. A 2007, 366, 211–216. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Dynamical Systems in Neuroscience; The MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Rosso, O.A.; Larrondo, H.A.; Martín, M.T.; Plastino, A.; Fuentes, M.A. Distinguishing noise from chaos. Phys. Rev. Lett. 2007, 99, 154102. [Google Scholar] [CrossRef] [PubMed]
- Rosso, O.A.; Olivares, F.; Plastino, A. Noise versus Chaos in a causal Fisher-Shannon plane. Pap. Phys. 2015, 7, 070006. [Google Scholar] [CrossRef]
- Amigó, J.M.; Rosso, O.A. Ordinal methods: Concepts, applications, new developments, and challenges. Chaos 2023, 33, 080401. [Google Scholar] [CrossRef]
- Guisande, N.; Rosso, O.A.; Montani, F. Neural Dynamics Associated with Biological Variation in Normal Human Brain Regions. Entropy 2024, 26, 828. [Google Scholar] [CrossRef] [PubMed]
- Zunino, L.; Porte, X.; Soriano, M.C. Identifying Ordinal Similarities at Different Temporal Scales. Entropy 2024, 26, 1016. [Google Scholar] [CrossRef]
- Valverde, E.R.; Vampa, V.; Rosso, O.A.; Arini, P.D. Spatio-Temporal Analysis of Acute Myocardial Ischaemia Based on Entropy–Complexity Plane. Entropy 2025, 27, 8. [Google Scholar] [CrossRef]
- Duarte, C.D.; Pacheco, M.; Iaconis, F.R.; Rosso, O.A.; Gasaneo, G.; Delrieux, C.A. Statistical Complexity Analysis of Sleep Stages. Entropy 2025, 27, 76. [Google Scholar] [CrossRef]
- Olivares, F.; Marín-Rodríguez, F.J.; Acharya, K.; Zanin, M. Evaluating Methods for Detrending Time Series Using Ordinal Patterns, with an Application to Air Transport Delays. Entropy 2025, 27, 230. [Google Scholar] [CrossRef]
- Lange, H.; Hauhs, M. Complexity Analysis of Environmental Time Series. Entropy 2025, 27, 381. [Google Scholar] [CrossRef] [PubMed]
- Suriano, M.; Caram, L.F.; Caiafa, C.; Merlino, H.D.; Rosso, O.A. Information Theory Quantifiers in Cryptocurrency Time Series Analysis. Entropy 2025, 27, 450. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Venegas, J.A.; Gallarta-Sáenz, P.; Hurtado, R.G.; Gómez-Gardeñes, J.; Soriano-Paños, D. Quantum-Like Approaches Unveil the Intrinsic Limits of Predictability in Compartmental Models. Entropy 2024, 26, 888. [Google Scholar] [CrossRef]
- Quintanilha Valente, S.C.; da Costa Lima Bruni, R.; González Arenas, Z.; Barci, D.G. Effects of Multiplicative Noise in Bistable Dynamical Systems. Entropy 2025, 27, 155. [Google Scholar] [CrossRef] [PubMed]
- Al-Saffar, A.; Kim, E.-J. Sustainability of a Three-Species Predator–Prey Model in Tumor-Immune Dynamics with Periodic Treatment. Entropy 2025, 27, 264. [Google Scholar] [CrossRef]
- Monteoliva, D.; Plastino, A.; Plastino, A.R. Information Theoretical Analysis of Quantum Mixedness in a Finite Model of Interacting Fermions. Entropy 2025, 27, 37. [Google Scholar] [CrossRef]
- Consolini, G.; De Michelis, P. Irreversibility and Energy Transfer at Non-MHD Scales in a Magnetospheric Current Disruption Event. Entropy 2025, 27, 260. [Google Scholar] [CrossRef]
- Hubay, C.Á.; Papp, B.; Kalmár-Nagy, T. Turbulent Flow in Street Canyons: A Complexity Approach. Entropy 2025, 27, 488. [Google Scholar] [CrossRef]
- Lin, Z.; Pattanayak, A.K. A Chaos Synchronization Diagnostic: Difference Time Series Peak Complexity (DTSPC). Entropy 2024, 26, 1085. [Google Scholar] [CrossRef]
- Leyva, I.; Almendral, J.A.; Letellier, C.; Sendiña-Nadal, I. Local Predictors of Explosive Synchronization with Ordinal Methods. Entropy 2025, 27, 113. [Google Scholar] [CrossRef]
- Schneider, D.M.; Zanette, D.H. The Structure of Bit-String Similarity Networks. Entropy 2025, 27, 57. [Google Scholar] [CrossRef] [PubMed]
- Dec, J.; Dolina, M.; Drożdż, S.; Kluszczyński, R.; Kwapień, J.; Stanisz, T. Exploring Word-Adjacency Networks with Multifractal Time Series Analysis Techniques. Entropy 2025, 27, 356. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Fontaine, S.A.; Amigó, J.M. Applications of Entropy in Data Analysis and Machine Learning: A Review. Entropy 2024, 26, 1126. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amigó, J.M.; Montani, F. Nonlinear Dynamics and Applications. Entropy 2025, 27, 688. https://doi.org/10.3390/e27070688
Amigó JM, Montani F. Nonlinear Dynamics and Applications. Entropy. 2025; 27(7):688. https://doi.org/10.3390/e27070688
Chicago/Turabian StyleAmigó, José M., and Fernando Montani. 2025. "Nonlinear Dynamics and Applications" Entropy 27, no. 7: 688. https://doi.org/10.3390/e27070688
APA StyleAmigó, J. M., & Montani, F. (2025). Nonlinear Dynamics and Applications. Entropy, 27(7), 688. https://doi.org/10.3390/e27070688