Measurement-Induced Dynamical Quantum Thermalization
Abstract
:1. Introduction
2. Measurement and Entropy in Isolated Quantum Systems
3. Model and Time-Evolution Method
4. Entanglement Entropy
4.1. Broad Energy Spectrum
4.2. Narrow Energy Spectrum
5. Thermalization Dynamics of Local Occupation Numbers and Spectra
5.1. Thermalization Dynamics of Local Occupation Numbers
5.2. Long-Time Thermalization of Local Spectra
6. Thermal Behavior of Non-Local Density Correlations
7. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ETH | Eigenstate thermalization hypothesis |
DBG | Dynamical (heat) bath generation |
FDT | Fluctuation–dissipation theorem |
GOE | Gaussian orthogonal ensemble |
COM | Center of motion |
References
- Deutsch, J.M. Quantum statistical mechanics in a closed system. Phys. Rev. A 1991, 43, 2046–2049. [Google Scholar] [CrossRef]
- Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 1994, 50, 888–901. [Google Scholar] [CrossRef]
- Rigol, M.; Dunjko, V.; Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 2008, 452, 854. [Google Scholar] [CrossRef]
- D’Alessio, L.; Kafri, Y.; Polkovnikov, A.; Rigol, M. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 2016, 65, 239–362. [Google Scholar] [CrossRef]
- Rigol, M. Breakdown of Thermalization in Finite One-Dimensional Systems. Phys. Rev. Lett. 2009, 103, 100403. [Google Scholar] [CrossRef]
- Pozsgay, B. Failure of the generalized eigenstate thermalization hypothesis in integrable models with multiple particle species. J. Stat. Mech. Theory Exp. 2014, 2014, P09026. [Google Scholar] [CrossRef]
- Posazhennikova, A.; Trujillo-Martinez, M.; Kroha, J. Thermalization of Isolated Bose-Einstein Condensates by Dynamical Heat Bath Generation. Ann. Phys. 2017, 530, 1700124. [Google Scholar] [CrossRef]
- Eccles, S. Why ETH? On thermalization and locality. arXiv 2025, arXiv:2502.04784. [Google Scholar] [CrossRef]
- Posazhennikova, A.; Trujillo-Martinez, M.; Kroha, J. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates. Phys. Rev. Lett. 2016, 116, 225304. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Canonical Typicality. Phys. Rev. Lett. 2006, 96, 050403. [Google Scholar] [CrossRef]
- Zurek, W.H. Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 1981, 24, 1516–1525. [Google Scholar] [CrossRef]
- Zurek, W.H. Environment-induced superselection rules. Phys. Rev. D 1982, 26, 1862–1880. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401–5406. [Google Scholar] [CrossRef]
- Yukalov, V. Equilibration of quasi-isolated quantum systems. Phys. Lett. A 2012, 376, 550–554. [Google Scholar] [CrossRef]
- Yukalov, V. Decoherence and equilibration under nondestructive measurements. Ann. Phys. 2012, 327, 253–263. [Google Scholar] [CrossRef]
- Müller, M.P.; Adlam, E.; Masanes, L.; Wiebe, N. Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems. Comm. Math. Phys. 2015, 340, 499–561. [Google Scholar] [CrossRef]
- Kollath, C.; Läuchli, A.M.; Altman, E. Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model. Phys. Rev. Lett. 2007, 98, 180601. [Google Scholar] [CrossRef]
- Oganesyan, V.; Huse, D.A. Localization of interacting fermions at high temperature. Phys. Rev. B 2007, 75, 155111. [Google Scholar] [CrossRef]
- Atas, Y.Y.; Bogomolny, E.; Giraud, O.; Roux, G. Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles. Phys. Rev. Lett. 2013, 110, 084101. [Google Scholar] [CrossRef]
- Araki, H.; Lieb, E.H. Entropy inequalities. Commun. Math. Phys. 1970, 18, 160–170. [Google Scholar] [CrossRef]
- Rammer, J. Quantum Field Theory of Non-Equilibrium States, 1st ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenk, M.; Biswas, S.; Posazhennikova, A.; Kroha, J. Measurement-Induced Dynamical Quantum Thermalization. Entropy 2025, 27, 636. https://doi.org/10.3390/e27060636
Lenk M, Biswas S, Posazhennikova A, Kroha J. Measurement-Induced Dynamical Quantum Thermalization. Entropy. 2025; 27(6):636. https://doi.org/10.3390/e27060636
Chicago/Turabian StyleLenk, Marvin, Sayak Biswas, Anna Posazhennikova, and Johann Kroha. 2025. "Measurement-Induced Dynamical Quantum Thermalization" Entropy 27, no. 6: 636. https://doi.org/10.3390/e27060636
APA StyleLenk, M., Biswas, S., Posazhennikova, A., & Kroha, J. (2025). Measurement-Induced Dynamical Quantum Thermalization. Entropy, 27(6), 636. https://doi.org/10.3390/e27060636