The Black Hole Information Problem
browski presents a comparative analysis of the plethora of nonextensive and/or nonadditive entropies that go beyond the standard Boltzmann–Gibbs formulation. After defining the basic notions of additivity, extensivity, and composability, he discusses the properties of these entropies and their mutual relations, if they exist. He argues that gravitational systems admit long-range interactions, which usually lead to a break of the standard additivity rule for thermodynamic systems composed of subsystems in Boltzmann–Gibbs thermodynamics.Conflicts of Interest
References
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Hawking, S.W. Black Holes and Thermodynamics. Phys. Rev. D 1976, 13, 191–197. [Google Scholar] [CrossRef]
- Penington, G. Entanglement Wedge Reconstruction and the Information Paradox. J. High Energy Phys. 2020, 2020, 002. [Google Scholar] [CrossRef]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. Replica Wormholes and the Entropy of Hawking Radiation. J. High Energy Phys. 2020, 2020, 013. [Google Scholar] [CrossRef]
- Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H. The Entropy of Bulk Quantum Fields and the Entanglement Wedge of an Evaporating Black Hole. J. High Energy Phys. 2019, 2019, 063. [Google Scholar] [CrossRef]
- Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y. The Page Curve of Hawking Radiation from Semiclassical Geometry. J. High Energy Phys. 2020, 2020, 149. [Google Scholar] [CrossRef]
- Calmet, X.; Casadio, R.; Hsu, S.D.H.; Kuipers, F. Quantum Hair from Gravity. Phys. Rev. Lett. 2022, 128, 111301. [Google Scholar] [CrossRef] [PubMed]
- Calmet, X.; Hsu, S.D.H. Quantum hair and black hole information. Phys. Lett. B 2022, 827, 136995. [Google Scholar] [CrossRef]
- Calmet, X.; Hsu, S.D.H. Replica Wormholes and Quantum Hair. arXiv 2024, arXiv:2404.02331. [Google Scholar]
- Calmet, X.; Hsu, S.D.H.; Sebastianutti, M. Quantum gravitational corrections to particle creation by black holes. Phys. Lett. B 2023, 841, 137820. [Google Scholar] [CrossRef]
- Calmet, X.; Hsu, S.D.H. A brief history of Hawking’s information paradox. EPL 2022, 139, 49001. [Google Scholar] [CrossRef]
- Calmet, X.; Hsu, S.D.H. Black Hole Information, Replica Wormholes, and Macroscopic Entanglement. arXiv 2024, arXiv:2412.07807. [Google Scholar] [CrossRef]
- Neukart, F.; Brasher, R.; Marx, E. The Quantum Memory Matrix: A Unified Framework for the Black Hole Information Paradox. Entropy 2024, 26, 1039. [Google Scholar] [CrossRef] [PubMed]
- Jacak, J.E. Modification of Premises for the Black Hole Information Paradox Caused by Topological Constraints in the Event Horizon Vicinity. Entropy 2024, 26, 1035. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, Y.; Yang, L.; Yang, S.; Lu, J. Corrected Thermodynamics of Black Holes in f(R) Gravity with Electrodynamic Field and Cosmological Constant. Entropy 2024, 26, 868. [Google Scholar] [CrossRef] [PubMed]
- Da̧browski, M.P. Look Beyond Additivity and Extensivity of Entropy for Black Hole and Cosmological Horizons. Entropy 2024, 26, 814. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Mann, R.B. Lagrangian Partition Functions Subject to a Fixed Spatial Volume Constraint in the Lovelock Theory. Entropy 2024, 26, 291. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Sasaki, M.; Yeom, D.H.; Yoon, J. Tunneling between Multiple Histories as a Solution to the Information Loss Paradox. Entropy 2023, 25, 1663. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Viollet, S. Discreteness Unravels the Black Hole Information Puzzle: Insights from a Quantum Gravity Toy Model. Entropy 2023, 25, 1479. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calmet, X.; Casadio, R.; Hsu, S.D.H. The Black Hole Information Problem. Entropy 2025, 27, 592. https://doi.org/10.3390/e27060592
Calmet X, Casadio R, Hsu SDH. The Black Hole Information Problem. Entropy. 2025; 27(6):592. https://doi.org/10.3390/e27060592
Chicago/Turabian StyleCalmet, Xavier, Roberto Casadio, and Stephen D. H. Hsu. 2025. "The Black Hole Information Problem" Entropy 27, no. 6: 592. https://doi.org/10.3390/e27060592
APA StyleCalmet, X., Casadio, R., & Hsu, S. D. H. (2025). The Black Hole Information Problem. Entropy, 27(6), 592. https://doi.org/10.3390/e27060592

