Deterministic Quantum Dense Coding Based on Non-Maximal Entangled Channel
Abstract
:1. Introduction
2. Deterministic Quantum Dense Coding on Non-Maximum Entangled State
2.1. Unitary Operations
2.2. Orthogonal Complete Basis
2.3. Process of Dense Coding
2.4. Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H.; Wiesner, S.J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 1992, 69, 2881–2884. [Google Scholar] [CrossRef]
- Duan, L.M.; Lukin, M.D.; Cirac, J.I.; Zoller, P.F. Long-distance quantum communication with atomic ensembles and linear optics. Nature 2001, 414, 413–418. [Google Scholar] [CrossRef]
- Gisin, N.; Thew, R. Quantum communication. Nat. Photonics 2007, 1, 165–171. [Google Scholar] [CrossRef]
- Wasielewski, M.R.; Forbes, M.D.; Frank, N.L.; Kowalski, K.; Scholes, G.D.; Yuen-Zhou, J.; Baldo, M.A.; Freedman, D.E.; Goldsmith, R.H.; Goodson, T., III; et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 2020, 4, 490–504. [Google Scholar] [CrossRef]
- Gühne, O.; Haapasalo, E.; Kraft, T.; Pellonpää, J.P.; Uola, R. Colloquium: Incompatible measurements in quantum information science. Rev. Mod. Phys. 2023, 95, 011003. [Google Scholar] [CrossRef]
- Darienzo, M.; Kelly, A.M.; Schneble, D.; Wei, T.C. Student attitudes toward quantum information science and technology in a high school outreach program. Phys. Rev. Phys. Educ. Res. 2024, 20, 020126. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 844–849. [Google Scholar] [CrossRef]
- Šupić, I.; Bowles, J.; Renou, M.O.; Acín, A.; Hoban, M.J. Quantum networks self-test all entangled states. Nat. Phys. 2023, 19, 670–675. [Google Scholar] [CrossRef]
- Santos, A.C.; Bachelard, R. Generation of maximally entangled long-lived states with giant atoms in a waveguide. Phys. Rev. Lett. 2023, 130, 053601. [Google Scholar] [CrossRef]
- Shaw, A.L.; Chen, Z.; Choi, J.; Mark, D.K.; Scholl, P.; Finkelstein, R.; Elben, A.; Choi, S.; Endres, M. Benchmarking highly entangled states on a 60-atom analogue quantum simulator. Nature 2024, 628, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.K.; Popescu, S. Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource? Phys. Rev. Lett. 1999, 83, 1459. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, B.H.; Li, C.F.; Guo, G.C. Advances in quantum dense coding. Adv. Quantum Technol. 2019, 2, 1900011. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Qin, J.; Li, J.; Shi, Y.; Zeng, B.; Yan, Z.; Jia, X.; Xie, C.; Peng, K. Frequency-Division Multiplexing Continuous Variable Quantum Dense Coding with Broadband Entanglement. Laser Photonics Rev. 2024, 18, 2400094. [Google Scholar] [CrossRef]
- Yang, X.; Bai, M.Q.; Mo, Z.W.; Xiang, Y. Bidirectional and cyclic quantum dense coding in a high-dimension system. Quantum Inf. Process. 2020, 19, 43. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef] [PubMed]
- Stenholm, S.; Bardroff, P.J. Teleportation of N-dimensional states. Phys. Rev. A 1998, 58, 4373. [Google Scholar] [CrossRef]
- Karlsson, A.; Bourennane, M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 1998, 58, 4394. [Google Scholar] [CrossRef]
- Li, C.; Song, H.S.; Luo, Y.X. Criterion for general quantum teleportation. Phys. Lett. A 2002, 297, 121–125. [Google Scholar] [CrossRef]
- Hu, X.M.; Guo, Y.; Liu, B.H.; Li, C.F.; Guo, G.C. Progress in quantum teleportation. Nat. Rev. Phys. 2023, 5, 339–353. [Google Scholar] [CrossRef]
- Deng, F.G.; Long, G.L.; Liu, X.S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 2003, 68, 042317. [Google Scholar] [CrossRef]
- Deng, F.G.; Long, G.L. Secure direct communication with a quantum one-time pad. Phys. Rev. A—At. Mol. Opt. Phys. 2004, 69, 052319. [Google Scholar] [CrossRef]
- Wu, J.; Long, G.L.; Hayashi, M. Quantum secure direct communication with private dense coding using a general preshared quantum state. Phys. Rev. Appl. 2022, 17, 064011. [Google Scholar] [CrossRef]
- Li, X.J.; Wang, M.; Pan, X.B.; Zhang, Y.R.; Long, G.L. One-photon-interference quantum secure direct communication. Entropy 2024, 26, 811. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Leibrandt, D.R.; Leibfried, D.; Chou, C.W. Quantum entanglement between an atom and a molecule. Nature 2020, 581, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Lago-Rivera, D.; Grandi, S.; Rakonjac, J.V.; Seri, A.; de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 2021, 594, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Wein, S.C.; Loredo, J.C.; Maffei, M.; Hilaire, P.; Harouri, A.; Somaschi, N.; Lemaître, A.; Sagnes, I.; Lanco, L.; Krebs, O.; et al. Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photonics 2022, 16, 374–379. [Google Scholar] [CrossRef]
- Braun, D.; Haake, F.; Strunz, W.T. Universality of Decoherence. Phys. Rev. Lett. 2001, 86, 2913–2917. [Google Scholar] [CrossRef]
- Carvalho, A.R.R.; Mintert, F.; Buchleitner, A. Decoherence and Multipartite Entanglement. Phys. Rev. Lett. 2004, 93, 230501. [Google Scholar] [CrossRef]
- Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L. Effects of noise in excitable systems. Phys. Rep. 2004, 392, 321–424. [Google Scholar] [CrossRef]
- Tyloo, M.; Coletta, T.; Jacquod, P. Robustness of Synchrony in Complex Networks and Generalized Kirchhoff Indices. Phys. Rev. Lett. 2018, 120, 084101. [Google Scholar] [CrossRef]
- Ronellenfitsch, H.; Dunkel, J.; Wilczek, M. Optimal Noise-Canceling Networks. Phys. Rev. Lett. 2018, 121, 208301. [Google Scholar] [CrossRef]
- Banaszek, K. Optimal quantum teleportation with an arbitrary pure state. Phys. Rev. A 2000, 62, 024301. [Google Scholar] [CrossRef]
- Li, W.L.; Li, C.F.; Guo, G.C. Probabilistic teleportation and entanglement matching. Phys. Rev. A 2000, 61, 034301. [Google Scholar] [CrossRef]
- Roa, L.; Delgado, A.; Fuentes-Guridi, I. Optimal conclusive teleportation of quantum states. Phys. Rev. A 2003, 68, 022310. [Google Scholar] [CrossRef]
- Roa, L.; Groiseau, C. Probabilistic teleportation without loss of information. Phys. Rev. A 2015, 91, 012344. [Google Scholar] [CrossRef]
- Liu, J.-M.; Wang, Y.-Z. Probabilistic remote state preparation by W states. Chin. Phys. 2004, 13, 147. [Google Scholar]
- Yu, C.S.; Song, H.S.; Wang, Y.H. Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 2006, 73, 022340. [Google Scholar] [CrossRef]
- Wu, W.; Liu, W.T.; Chen, P.X.; Li, C.Z. Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 2010, 81, 042301. [Google Scholar] [CrossRef]
- Hao, J.C.; Li, C.F.; Guo, G.C. Probabilistic dense coding and teleportation. Phys. Lett. A 2000, 278, 113–117. [Google Scholar] [CrossRef]
- Zhang, G.-H.; Yan, F.-L. Probabilistic Dense Coding Using Non-Maximally Entangled Three-Particle States. Chin. Phys. Lett. 2009, 26, 090302. [Google Scholar]
- Tian, M.B.; Zhang, G.F. Improving the capacity of quantum dense coding by weak measurement and reversal measurement. Quantum Inf. Process. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Kögler, R.A.; Neves, L. Optimal probabilistic dense coding schemes. Quantum Inf. Process. 2017, 16, 92. [Google Scholar] [CrossRef]
- Wang, M.Y.; Yang, L.G.; Yan, F.L. General probabilistic dense coding scheme. Chin. Phys. Lett. 2005, 22, 1053–1056. [Google Scholar]
- Dušek, M.; Haderka, O.; Hendrych, M.; Myška, R. Quantum identification system. Phys. Rev. A 1999, 60, 149. [Google Scholar] [CrossRef]
- Dutta, A.; Pathak, A. A short review on quantum identity authentication protocols: How would Bob know that he is talking with Alice? Quantum Inf. Process. 2022, 21, 369. [Google Scholar] [CrossRef]
- Zhou, L.; Sheng, Y.B. One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 2022, 65, 250311. [Google Scholar] [CrossRef]
- Dutta, A.; Pathak, A. Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quantum Inf. Process. 2022, 22, 13. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, M.M.; Zhong, W.; Sheng, Y.B.; Zhou, L. Single-Photon Based Three-Party Quantum Secure Direct Communication with Identity Authentication. Ann. Phys. 2024, 536, 2300407. [Google Scholar] [CrossRef]
Orthogonal Measurement | Measurement of Auxiliary Qubit e | Unitary Matrix | Coded Message |
---|---|---|---|
U | 00 | ||
01 | |||
01 | |||
U | 00 | ||
10 | |||
11 | |||
11 | |||
10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Li, Z.; Wang, Z. Deterministic Quantum Dense Coding Based on Non-Maximal Entangled Channel. Entropy 2025, 27, 104. https://doi.org/10.3390/e27020104
Xin X, Li Z, Wang Z. Deterministic Quantum Dense Coding Based on Non-Maximal Entangled Channel. Entropy. 2025; 27(2):104. https://doi.org/10.3390/e27020104
Chicago/Turabian StyleXin, Xuanxuan, Zhixing Li, and Zhen Wang. 2025. "Deterministic Quantum Dense Coding Based on Non-Maximal Entangled Channel" Entropy 27, no. 2: 104. https://doi.org/10.3390/e27020104
APA StyleXin, X., Li, Z., & Wang, Z. (2025). Deterministic Quantum Dense Coding Based on Non-Maximal Entangled Channel. Entropy, 27(2), 104. https://doi.org/10.3390/e27020104