RTINet: A Lightweight and High-Performance Railway Turnout Identification Network Based on Semantic Segmentation
Abstract
:1. Introduction
2. Methodology
2.1. Lightweight Feature Extraction Network
2.2. Depth-Separable Convolutions
2.3. Lightweight Attention Mechanism Module
2.4. Loss Function
3. Experiments and Results
3.1. Introduction to RTSP Dataset
3.1.1. Dataset Construction
3.1.2. Data Annotation
3.2. Experiment Set-Up and Evaluation Metrics
3.3. Performance Evaluation of the Proposed RTINet Model
3.4. Ablation Study
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kljaić, Z.; Pavković, D.; Cipek, M.; Trstenjak, M.; Mlinarić, T.J.; Nikšić, M. An Overview of Current Challenges and Emerging Technologies to Facilitate Increased Energy Efficiency, Safety, and Sustainability of Railway Transport. Future Internet 2023, 15, 347. [Google Scholar] [CrossRef]
- Hu, J.; Xu, L.; He, X.; Meng, W. Abnormal driving detection based on normalized driving behavior. IEEE Trans. Veh. Technol. 2017, 66, 6645–6652. [Google Scholar] [CrossRef]
- Papadeas, I.; Tsochatzidis, L.; Amanatiadis, A.; Pratikakis, I. Real-time semantic image segmentation with deep learning for autonomous driving: A survey. Appl. Sci. 2021, 11, 8802. [Google Scholar] [CrossRef]
- Bono, F.M.; Radicioni, L.; Cinquemani, S.; Benedetti, L.; Cazzulani, G.; Somaschini, C.; Belloli, M. A deep learning approach to detect failures in bridges based on the coherence of signals. Future Internet 2023, 15, 119. [Google Scholar] [CrossRef]
- Ye, J.; Stewart, E.; Chen, Q.; Chen, L.; Roberts, C. A vision-based method for line-side switch rail condition monitoring and inspection. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022, 236, 986–996. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, J.; Tang, T.; Xu, T.; Wang, F. SVDD-based research on railway-turnout fault detection and health assessment. J. Southwest Jiaotong Univ. 2018, 53, 842–849. [Google Scholar]
- Yan, M.; Wang, J.; Li, J.; Zhang, K.; Yang, Z. Traffic scene semantic segmentation using self-attention mechanism and bi-directional GRU to correlate context. Neurocomputing 2020, 386, 293–304. [Google Scholar] [CrossRef]
- Jebamikyous, H.H.; Kashef, R. Autonomous vehicles perception (avp) using deep learning: Modeling, assessment, and challenges. IEEE Access 2022, 10, 10523–10535. [Google Scholar] [CrossRef]
- Cao, Z.; Qin, Y.; Jia, L.; Xie, Z.; Gao, Y.; Wang, Y.; Li, P.; Yu, Z. Railway Intrusion Detection Based on Machine Vision: A Survey, Challenges, and Perspectives. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6427–6448. [Google Scholar] [CrossRef]
- Kumar, A.; Harsha, S. A systematic literature review of defect detection in railways using machine vision-based inspection methods. Int. J. Transp. Sci. Technol. 2024; in press. [Google Scholar]
- Karakose, M.; Yaman, O.; Akin, E. Detection of rail switch passages through image processing on railway line and use of condition-monitoring approach. In Proceedings of the International Conference on Advanced Technology & Sciences, ICAT, Konya, Turkey, 1–3 September 2016; Volume 16, pp. 100–105. [Google Scholar]
- Jang, J.; Shin, M.; Lim, S.; Park, J.; Kim, J.; Paik, J. Intelligent image-based railway inspection system using deep learning-based object detection and weber contrast-based image comparison. Sensors 2019, 19, 4738. [Google Scholar] [CrossRef]
- Chen, C.; Qin, H.; Bai, Y. Exploration of Vision-based Railway Turnout Recognition and Application. In Proceedings of the 2024 International Conference on Development and Application Systems (DAS), Suceava, Romania, 23–25 May 2024; pp. 127–135. [Google Scholar]
- Jahan, K.; Niemeijer, J.; Kornfeld, N.; Roth, M. Deep neural networks for railway switch detection and classification using onboard camera images. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Virtual, 5–7 December 2021; pp. 01–07. [Google Scholar]
- Lian, L.; Cao, Z.; Qin, Y.; Gao, Y.; Bai, J.; Yu, H.; Jia, L. Densely Multi-scale Fusion Network for Lightweight and Accurate Semantic Segmentation of Railway Scenes. IEEE Trans. Instrum. Meas. 2024, 73, 5022611. [Google Scholar] [CrossRef]
- Abid, M.; Teixeira, M.; Mahtani, A.; Laurent, T. RailCloud-HdF: A Large-Scale Point Cloud Dataset for Railway Scene Semantic Segmentation. Proc. Copyr. 2024, 159, 170. [Google Scholar]
- Weng, Y.; Xu, M.; Chen, X.; Peng, C.; Xiang, H.; Xie, P.; Yin, H. An Efficient Algorithm for Extracting Railway Tracks Based on Spatial-Channel Graph Convolutional Network and Deep Neural Residual Network. ISPRS Int. J. Geo-Inf. 2024, 13, 309. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, C.; Yuan, L.; Tang, S.; Wei, G. Real-time obstacle detection over rails using deep convolutional neural network. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1007–1012. [Google Scholar]
- Hao, S.; Zhou, Y.; Guo, Y. A brief survey on semantic segmentation with deep learning. Neurocomputing 2020, 406, 302–321. [Google Scholar] [CrossRef]
- Yan, Y.; Deng, C.; Li, L.; Zhu, L.; Ye, B. Survey of image semantic segmentation methods in the deep learning era. J. Image Graph. 2023, 28, 3342–3362. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Zendel, O.; Murschitz, M.; Zeilinger, M.; Steininger, D.; Abbasi, S.; Beleznai, C. RailSem19: A Dataset for Semantic Rail Scene Understanding. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 1221–1229. [Google Scholar]
- Leibner, P.; Hampel, F.; Schindler, C. GERALD: A novel dataset for the detection of German mainline railway signals. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2023, 237, 1332–1342. [Google Scholar] [CrossRef]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Park, J. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514. [Google Scholar]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-imbalanced NLP Tasks. arXiv 2020, arXiv:1911.02855. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Mao, A.; Mohri, M.; Zhong, Y. Cross-entropy loss functions: Theoretical analysis and applications. In Proceedings of the International Conference on Machine Learning. PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 23803–23828. [Google Scholar]
- Nickolls, J. GPU parallel computing architecture and CUDA programming model. In Proceedings of the 2007 IEEE Hot Chips 19 Symposium (HCS), Stanford, CA, USA, 19–21 August 2007; pp. 1–12. [Google Scholar]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; proceedings, part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef]
- Wei, D.; Wei, X.; Tang, Q.; Jia, L.; Yin, X.; Ji, Y. RTLSeg: A novel multi-component inspection network for railway track line based on instance segmentation. Eng. Appl. Artif. Intell. 2023, 119, 105822. [Google Scholar] [CrossRef]
Category | Number |
---|---|
Rail | 1344 |
Turnout | 964 |
Branch | 962 |
Method | IoU (%) | ||
---|---|---|---|
Rail | Turnout | Branch | |
SegNet [33] | 67 | 74 | 50 |
PSPNet [34] | 51 | 61 | 20 |
UNet-vgg [36] | 74 | 77 | 60 |
HrNet [38] | 71 | 76 | 48 |
DeepLabv3+-xception [21] | 80 | 78 | 69 |
RTINet | 84 | 85 | 75 |
Method | PA (%) | ||
---|---|---|---|
Rail | Turnout | Branch | |
SegNet [33] | 80 | 85 | 71 |
PSPNet [34] | 78 | 85 | 29 |
UNet-vgg [36] | 88 | 89 | 79 |
HrNet [38] | 86 | 85 | 63 |
DeepLabv3+-xception [21] | 88 | 85 | 87 |
RTINet | 93 | 93 | 88 |
Method | Performance Metrics | ||||
---|---|---|---|---|---|
mIoU (%) | mPA (%) | mPrecision (%) | mRecall (%) | FPS | |
SegNet [33] | 72.53 | 84.10 | 81.83 | 84.10 | 18 |
PSPNet [34] | 57.82 | 72.55 | 67.54 | 72.55 | 36 |
UNet-vgg [36] | 77.53 | 88.75 | 84.70 | 88.75 | 15 |
HrNet [38] | 73.57 | 83.34 | 83.71 | 83.34 | 23 |
DeepLabv3+-xception [21] | 81.58 | 90.07 | 89.07 | 90.07 | 23 |
RTINet | 85.94 | 93.24 | 90.74 | 93.24 | 78 |
Method | Time Complexity (GFLOPs) | Space Complexity (M) |
---|---|---|
SegNet [33] | 327.1 | 29.5 |
PSPNet [34] | 118.4 | 46.7 |
UNet-vgg [36] | 452.3 | 24.9 |
HrNet [38] | 90.9 | 29.5 |
DeepLabv3+-xception [21] | 166.9 | 54.7 |
RTINet | 11.8 | 2.7 |
Baseline | MobileNetv2 | DSConv | Dice Loss | BAM | mIoU (%) | mPA (%) | FPS |
---|---|---|---|---|---|---|---|
✓ | 81.58 | 90.07 | 23 | ||||
✓ | ✓ | 84.11 | 92.28 | 63 | |||
✓ | ✓ | ✓ | 83.17 | 92.19 | 82 | ||
✓ | ✓ | ✓ | ✓ | 84.13 | 93.28 | 82 | |
✓ | ✓ | ✓ | ✓ | ✓ | 85.94 | 93.24 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Zhang, W.; Li, H.; Jiang, Y.; Xian, Y.; Deng, J. RTINet: A Lightweight and High-Performance Railway Turnout Identification Network Based on Semantic Segmentation. Entropy 2024, 26, 878. https://doi.org/10.3390/e26100878
Wei D, Zhang W, Li H, Jiang Y, Xian Y, Deng J. RTINet: A Lightweight and High-Performance Railway Turnout Identification Network Based on Semantic Segmentation. Entropy. 2024; 26(10):878. https://doi.org/10.3390/e26100878
Chicago/Turabian StyleWei, Dehua, Wenjun Zhang, Haijun Li, Yuxing Jiang, Yong Xian, and Jiangli Deng. 2024. "RTINet: A Lightweight and High-Performance Railway Turnout Identification Network Based on Semantic Segmentation" Entropy 26, no. 10: 878. https://doi.org/10.3390/e26100878
APA StyleWei, D., Zhang, W., Li, H., Jiang, Y., Xian, Y., & Deng, J. (2024). RTINet: A Lightweight and High-Performance Railway Turnout Identification Network Based on Semantic Segmentation. Entropy, 26(10), 878. https://doi.org/10.3390/e26100878