Entropic Density Functional Theory
Abstract
:1. Introduction
2. Preliminaries
2.1. The Quantum MaxEnt Method
2.2. Optimal Approximations of Density Operators
3. Density Functional Formalism
3.1. Introducing Density as the Relevant Variable
3.2. The Entropic DFT Variational Principle
3.3. The DFT Theorem
4. The Kohn–Sham Approximation Scheme
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohn, W. Noble Lecture: Electronic structure of matter—Wave functions and density functionals. Rev. Mod. Phys. 1999, 71, 1253. [Google Scholar] [CrossRef]
- Jones, R.O. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897. [Google Scholar] [CrossRef]
- Argaman, M.; Makov, G. Density functional theory: An introduction. Am. J. Phys. 2000, 68, 69. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Mermin, D. Thermal properties of inhomogeneous electron gas. Phys. Rev. 1965, 137, A1441. [Google Scholar] [CrossRef]
- Eschrig, H. T > 0 ensemble-state density functional theory via Legendre transform. Phys. Rev. B 2010, 82, 205120. [Google Scholar] [CrossRef]
- Pribram-Jones, A.; Pittalis, S.; Gross, E.; Burke, K. Thermal Density Functional Theory in Context. In Frontiers and Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering; Graziani, F., Desjarlais, M.P., Redmer, R., Trickey, S.B., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 96, pp. 25–60. [Google Scholar]
- Burke, K.; Smith, J.C.; Grabowski, P.E.; Pribram-Jones, A. Exact conditions on the temperature dependence of density functionals. Phys. Rev. B 2016, 93, 195132. [Google Scholar] [CrossRef]
- Ebner, C.; Saam, W.F.; Stroud, D. Density-functional theory of simple classical fluids. I. Surfaces. Phys. Rev. A 1976, 14, 2264. [Google Scholar] [CrossRef]
- Evans, R. The nature of the liquid-vapor interface and other topics in the statistical mechanics of non-uniform classical fluids. Adv. Phys. 1979, 28, 143–200. [Google Scholar] [CrossRef]
- Tarazona, P. Free-energy density functional for hard spheres. Phys. Rev. A 1985, 31, 2672. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 1989, 63, 980. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.; Oettel, M.; Roth, R.; Kahl, G. New developments in classical density functional theory. J. Phys. Condens. Matter 2016, 28, 240401. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, A.; Caticha, A. An entropic approach to classical density functional theory. Phys. Sci. Forum 2021, 3, 13. [Google Scholar]
- Tseng, C.-Y.; Caticha, A. Using relative entropy to find optimal approximations: An application to simple fluids. Phys. A 2008, 387, 6759. [Google Scholar] [CrossRef]
- Alipour, M.; Badooei, Z. Information theoretic approach provides a reliable description for kinetic component of correlation energy density functional. Int. J. Quantum Chem. 2018, 118, 23. [Google Scholar] [CrossRef]
- Rong, C.; Wang, B.; Zhao, D.; Liu, S. Information-theoretic approach in density functional theory and its recent applications to chemical problems. Wires Comput. Mol. Sci. 2020, 10, 4. [Google Scholar] [CrossRef]
- Nagy, A. Fisher information in density functional theory. J. Chem. Phys. 2003, 119, 9401. [Google Scholar] [CrossRef]
- Nalewajski, R.F. Information principles in the theory of electronic structure. Chem. Phys. Lett. 2003, 372, 28–34. [Google Scholar] [CrossRef]
- Freiden, B.R. Physics from Fisher Information: A Unification; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Brillouin, L. Science and Information Theory; Academic Press: New York, NY, USA, 1952. [Google Scholar]
- Brillouin, L. The negentropy principle of information. J. Appl. Phys. 1953, 24, 1152. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. 1957, 108, 171. [Google Scholar] [CrossRef]
- Jaynes, E.T. Where do we stand on maximum entropy? In The Maximum Entropy Principle; Levine, R.D., Tribus, M., Eds.; MIT Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 3. [Google Scholar] [CrossRef]
- Shore, J.; Johnson, R. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef]
- Skilling, J. The Axioms of Maximum Entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering: Foundations; Springer: Dordrecht, The Netherlands, 1988; pp. 173–187. [Google Scholar]
- Caticha, A. Relative Entropy and Inductive Inference. arXiv 2004, arXiv:physics/0311093. [Google Scholar]
- Caticha, A.; Giffin, A. Updating Probabilities. arXiv 2006, arXiv:physics/0608185. [Google Scholar]
- Caticha, A. Information and Entropy. arXiv 2007, arXiv:0710.1068. [Google Scholar]
- Vanslette, K. Entropic Updating of Probabilities and Density Matrices. Entropy 2017, 19, 664. [Google Scholar] [CrossRef]
- Caticha, A. Entropic Physics: Probability, Entropy and the Foundations of Physics. Available online: https://www.arielcaticha.com/ (accessed on 20 November 2023).
- Caticha, A. Quantum Mechanics as Hamilton-Killing Flows on a Statistical Manifold. Phys. Sci. Forum 2021, 3, 12. [Google Scholar]
- Umegaki, H. Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math Sem. Rep. 1962, 14, 59–85. [Google Scholar] [CrossRef]
- Rajeev, S.G. A Hamilton-Jacobi formalism for thermodynamics. Ann. Phys. 2008, 323, 2265–2285. [Google Scholar] [CrossRef]
- Balian, R.; Valentin, P. Hamiltonian structure of thermodynamics with gauge. Eur. Phys. J. B 2001, 21, 269–282. [Google Scholar] [CrossRef]
- Lieb, E.H. Density functionals for Coulomb systems. Int. J. Quantum Chem. 1983, 24, 243. [Google Scholar] [CrossRef]
- Fukuda, R.; Kotani, T.; Suzuki, Y.; Yokojima, S. Density functional theory through Legendre transformation. Prog. Theor. Phys. 1994, 92, 833–862. [Google Scholar] [CrossRef]
- Yousefi, A. Entropic Density Functional Theory: Entropic Inference and the Equilibrium State of Inhomogeneous Fluids; State University of New York at Albany ProQuest Dissertation Publishing: Albany, NY, USA, 2021; p. 28863510. [Google Scholar]
- Feynman, R.P. Statistical Mechanics: A Set of Lectures; CRC Press: Boca Raton, FL, USA, 1972. [Google Scholar]
- Caticha, A. The Entropic Dynamics Approach to Quantum Mechanics. Entropy 2019, 21, 943. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefi, A.; Caticha, A. Entropic Density Functional Theory. Entropy 2024, 26, 10. https://doi.org/10.3390/e26010010
Yousefi A, Caticha A. Entropic Density Functional Theory. Entropy. 2024; 26(1):10. https://doi.org/10.3390/e26010010
Chicago/Turabian StyleYousefi, Ahmad, and Ariel Caticha. 2024. "Entropic Density Functional Theory" Entropy 26, no. 1: 10. https://doi.org/10.3390/e26010010
APA StyleYousefi, A., & Caticha, A. (2024). Entropic Density Functional Theory. Entropy, 26(1), 10. https://doi.org/10.3390/e26010010