Simultaneous Measurements of Noncommuting Observables: Positive Transformations and Instrumental Lie Groups
Abstract
:1. Introduction
“Well, why not say that all the things which should be handled in theory are just those things which we also can hope to observe somehow.” … I remember that when I first saw Einstein I had a talk with him about this. … [H]e said, “That may be so, but still it’s the wrong principle in philosophy.” And he explained that it is the theory finally which decides what can be observed and what can not and, therefore, one cannot, before the theory, know what is observable and what not.Werner Heisenberg, recalling a conversation with Einstein in 1926,interviewed by Thomas S. Kuhn, February 15, 1963 [1]
The science of optics, like every other physical science, has two different directions of progress, which have been called the ascending and the descending scale, the inductive and the deductive method, the way of analysis and of synthesis. In every physical science, we must ascend from facts to laws, by the way of induction and analysis; and must descend from laws to consequences, by the deductive and synthetic way. We must gather and group appearances, until the scientific imagination discerns their hidden law, and unity arises from variety: and then from unity must re-deduce variety, and force the discovered law to utter its revelations of the future.William Rowan Hamilton, 1833 [2]
- 1.
- The first shift, in Section 2.2.1, is about considering infinitesimally generated positive transformations as the fundamental measuring processes, similar to how infinitesimally generated unitary transformations are considered fundamental dynamical processes.
- 2.
- The next shift, in Section 2.2.2, is about how such instruments can, therefore, be understood as evolutions on an autonomous instrument manifold, relying not on states for their existence, but rather finding their home in an abstract instrumental Lie group.
- 3.
- The final shift, in Section 2.4, takes this new autonomy of the instrument a step further by pointing out that the definition of such instruments with instrumental Lie groups can be considered universally, independent even of the matrix representation of the observables and therefore not relying even on the specific Hilbert space.
2. Continuous, Differential Weak Measurements of Noncommuting Observables
2.1. Differential Weak Measurements and Incremental Kraus Operators
2.1.1. Differential Weak Measurement of a Single Observable
2.1.2. Differential Weak Measurements of Multiple Observables Simultaneously
2.2. Continuous Measurements of Noncommuting Observables: Piling Up Incremental Kraus Operators
2.2.1. Stochastic Differential Equations and Path Integrals
2.2.2. The Kraus-Operator Distribution Function and Subsequent Fokker-Planck-Kolmogorov Equation
2.3. Stepping Back into State Evolution
2.4. Getting Out of Hilbert Space: Universal Instruments, Towers of Chaos, and Principal Instruments
3. Principal Instruments: Cases 1, 2, and 3
- 1.
- The measurement of a single observable X.
- 2.
- The simultaneous momentum P and position Q measurement (SPQM), where P and Q have the canonical commutation relation,
- 3.
- The 3D isotropic spin measurement (ISM) of the three components of angular momentum, , , and , which have the commutation relations,
- 1.
- The measurement of a single observable X collapses to an eigenstate of X, that is, to a von Neumann POVM.
- 2.
- The SPQM collapses to the canonical-coherent-state POVM.
- 3.
- The ISM collapses to a spin-coherent-state POVM.
3.1. Preparing for Cases 1, 2, and 3
- 1.
- The measurement of a single observable X generates a 2D instrument, contained in a 2D abelian Lie group of positive transformations,
- 2.
- SPQM generates a 7D instrument, which is contained in the Instrumental Weyl-Heisenberg Group,
- 3.
- ISM generates a 7D instrument, which is contained in the Instrumental Spin Group,
3.1.1. Recap of the Instrument Manifold Program: Universal Notation
3.1.2. Cartan Coördinate Systems for Principal Instruments
- 1.
- For the measurement of a single observable, the instrumental Lie group is the abelian group of Equation (160). The K in the Cartan decomposition is and
- 2.
- For SPQM, the instrumental Lie group is the 7D of Equation (161). The K in the Cartan decomposition is and
- 3.
- For ISM, the instrumental Lie group is the 7D of Equation (162). The K in the Cartan decomposition is and
3.2. Measuring a Single Observable Continuously
3.3. Measuring Position and Momentum Continuously
3.4. Measuring the Three Components of Angular Momentum Continuously
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Stochastic Unitary and Jump Unravelings
Appendix B. Chantasri et al.’s Path Integrals
References
- Heisenberg, W. Interview of Werner Heisenberg by Thomas S. Kuhn. Session V of Oral History Interviews of Heisenberg, 15 February 1963; Niels Bohr Library & Archives, American Institute of Physics: College Park, MD, USA, 1963; Available online: www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-5 (accessed on 1 June 2023).
- Hamilton, W.R. On a General Method of Expressing the Paths of Light, and of the Planets, by the Coefficients of a Characteristic Function. Dublin Univ. Rev. Q. Mag. 1833, 1, 795–826, 1999 Version, Edited by David R. Wilkins. Available online: www.maths.tcd.ie/pub/HistMath/People/Hamilton/Papers.html (accessed on 1 June 2023).
- van der Waerden, B.L. Sources of Quantum Mechanics; Dover: Mineola, NY, USA, 1967. [Google Scholar]
- Schrödinger, E. Collected Papers on Wave Mechanics; AMS Chelsea Publishing: New York, NY, USA, 1982. [Google Scholar]
- Born, M. Zur Quantenmechanik der Stossvoränge. Z. Für Phys. 1926, 37, 863–867. [Google Scholar] [CrossRef]
- Wheeler, J.A.; Zurek, W.H. Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Duncan, A.; Janssen, M. From canonical transformations to transformation theory, 1926–1927: The road to Jordan’s Neue Begründung. Stud. Hist. Philos. Mod. Phys. 2009, 40, 352–362. [Google Scholar] [CrossRef]
- Duncan, A.; Janssen, M. (Never) mind your p’s and q’s: Von Neumann versus Jordan on the foundations of quantum theory. Eur. Phys. J. H 2013, 38, 175–259. [Google Scholar] [CrossRef]
- Oppenheimer, J.R. Three notes on the quantum theory of aperiodic effects. Phys. Rev. 1928, 31, 66–81. [Google Scholar] [CrossRef]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics: New Edition; Wheeler, N.A., Ed.; Princeton University Press: Princeton, NJ, USA, 2018. first published as Mathematische Grundlagen der Quantenmechanik in 1932. [Google Scholar]
- Wheeler, J.A. On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev. 1937, 52, 1107–1122. [Google Scholar] [CrossRef]
- Thorne, K.S.; Zurek, W.H. John Archibald Wheeler: A few highlights of his contributions to physics. In Geenral Relativity and John Wheeler; Ciufolini, I., Matzner, R.A., Eds.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2010; Volume 367, pp. 29–38. [Google Scholar]
- Jammer, M. The Conceptual Development of Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
- Schwinger, J. The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA 1959, 45, 1542–1553. [Google Scholar] [CrossRef]
- Wigner, E.P. The problem of measurement. Am. J. Phys. 1963, 31, 6–15. [Google Scholar] [CrossRef]
- Feynman, R.P.; Vernon, F.L., Jr. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 1963, 24, 118–173. [Google Scholar] [CrossRef]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Srinivas, M.D.; Davies, E.B. Photon counting probabilities in quantum optics. Opt. Acta 1981, 28, 981–996. [Google Scholar] [CrossRef]
- Barchielli, A.; Belavkin, V.P. Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A Math. Gen. 1991, 24, 1495–1514. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum theory of field-quadrature measurements. Phys. Rev. A 1993, 47, 642–662. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, H.M.; Milburn, G.J. Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 1993, 70, 548–551. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. Phys. Rev. A 1993, 47, 1652–1666. [Google Scholar] [CrossRef]
- Goetsch, P.; Graham, R. Linear stochastic wave equations for continuously measured quantum systems. Phys. Rev. A 1994, 50, 5242–5255. [Google Scholar] [CrossRef]
- Wiseman, H.M. Quantum Trajectories and Feedback. Ph.D. Thesis, University of Queensland, Brisbane, QLD, Australia, 1994. [Google Scholar]
- Wiseman, H.M. Quantum trajectories and quantum measurement theory. Quantum Semiclassical Opt. 1996, 8, 205–222. [Google Scholar] [CrossRef]
- Jackson, C.S. The photodetector, the heterodyne instrument, and the principle of instrument autonomy. arXiv 2022, arXiv:2210.11100. [Google Scholar]
- Jauch, J.M.; Piron, C. Generalized localizability. Helv. Phys. Acta 1967, 40, 559–570. [Google Scholar]
- Ludwig, G. Foundations of Quantum Mechanics I. In Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Ludwig, G. Foundations of Quantum Mechanics II. In Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Kraus, K. States, Effects, and Operations: Fundamental Notions of Quantum Theory; Böhm, A., Dollard, J.D., Wootters, W.K., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 190. [Google Scholar]
- Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Commun. Math. Phys. 1970, 17, 239–260. [Google Scholar] [CrossRef]
- Davies, E.B. Quantum Theory of Open Systems; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Carmichael, H. An Open System Approach to Quantum Optics; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Doherty, A.C.; Habib, S.; Jacobs, K.; Mabuchi, H.; Tan, S.M. Quantum feedback control and classical control theory. Phys. Rev. A 2000, 62, 012105. [Google Scholar] [CrossRef]
- Brun, T.A. A simple model of quantum trajectories. Am. J. Phys. 2002, 70, 719–737. [Google Scholar] [CrossRef]
- Jacobs, K.; Steck, D.A. A straightforward introduction to continuous quantum measurement. Contemp. Phys. 2006, 47, 279–303. [Google Scholar] [CrossRef]
- Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Jacobs, K. Quantum Measurement Theory and its Applications; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Barchielli, A.; Gregoratti, M. Quantum Trajectories and Measurements in Continuous Time; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Chantasri, A.; Dressel, J.; Jordan, A.N. Action principle for continuous quantum measurement. Phys. Rev. A 2013, 88, 042110. [Google Scholar] [CrossRef]
- Rouchon, P.; Ralph, J.F. Efficient quantum filtering for quantum feedback control. Phys. Rev. A 2015, 91, 012118. [Google Scholar] [CrossRef]
- Albert, V.V.; Bradlyn, B.; Fraas, M.; Jiang, L. Geometry and response of Lindbladians. Phys. Rev. X 2016, 6, 041031. [Google Scholar] [CrossRef]
- Hacohen-Gourgy, S.; Martin, L.S. Continuous measurements for control of superconducting circuits. Adv. Phys. X 2020, 5, 1813626. [Google Scholar] [CrossRef]
- Lewalle, P.; Elouard, C.; Manikandan, S.K.; Qian, X.-F.; Eberly, J.H.; Jordan, A.N. Entanglement of a pair of quantum emitters via continuous fluorescence measurements: A tutorial. Adv. Opt. Photonics 2021, 13, 517–583. [Google Scholar] [CrossRef]
- Benoist, T.; Fraas, M.; Pautrat, Y.; Pellegrini, C. Invariant measures for stochastic Schrödinger equations. Ann. Henri Poincaré 2021, 22, 347–374. [Google Scholar] [CrossRef]
- Karmakar, T.; Lewalle, P.; Jordan, A.N. Stochastic path-integral analysis of the continuously monitored quantum harmonic oscillator. PRX Quantum 2022, 3, 010327. [Google Scholar] [CrossRef]
- Barchielli, A.; Lanz, L.; Prosperi, G.M. A model for the macroscopic description and continual observations in quantum mechanics. Nuovo Cimento B 1982, 72, 79–121. [Google Scholar] [CrossRef]
- Jacobs, K.; Knight, P.L. Linear quantum trajectories: Applications to continuous projection measurements. Phys. Rev. A 1998, 57, 2301–2310. [Google Scholar] [CrossRef]
- Silberfarb, A.; Jessen, P.S.; Deutsch, I.H. Quantum state reconstruction via continuous measurement. Phys. Rev. Lett. 2005, 95, 030402. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Motzoi, F.; Li, H.; Sarovar, M.; Whaley, K.B. Deterministic generation of remote entanglement with active quantum feedback. Phys. Rev. A 2015, 92, 062321. [Google Scholar] [CrossRef]
- Jackson, C.S.; Caves, C.M. Simultaneous position and momentum measurement and the instrumental Weyl-Heisenberg group. Entropy 2023, 25, 1221. [Google Scholar] [CrossRef]
- Jackson, C.S.; Caves, C.M. How to perform the coherent measurement of a curved phase space by continuous isotropic measurement. I. Spin and the Kraus-operator geometry of SL(2,). Quantum 2023, 7, 1085. [Google Scholar] [CrossRef]
- Shojaee, E.; Jackson, C.S.; Riofrío, C.A.; Kalev, A.; Deutsch, I.H. Optimal pure-state qubit tomography via sequential weak measurements. Phys. Rev. Lett. 2018, 121, 130404. [Google Scholar] [CrossRef]
- Poincaré, H. Papers on Topology: Analysis Situs and Its Five Supplements, History of Mathematics; Stillwell, J., Translator; American Mathematical Society: Providence, RI, USA; The London Mathematical Society: London, UK, 2010; Volume 37. [Google Scholar]
- Weyl, H. The Concept of a Riemann Surface, 3rd ed.; Dover: Mineola, NY, USA, 2009. [Google Scholar]
- Bourbaki, N. Elements of Mathematics. Lie Groups and Lie Algebras, Chapters 1–3; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Knapp, A.W. Representation Theory of Semisimple Lie Groups: An Overview Based on Examples; Princeton Landmarks in Mathematics; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Knapp, A.W. Lie Groups Beyond an Introduction, 2nd ed.; Progress in Mathematics; Birkhäuser: Basel, Switzerland, 2002; Volume 140. [Google Scholar]
- Haar, A. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math. Second. Ser. 1933, 34, 147–169. [Google Scholar] [CrossRef]
- von Neumann, J. Invariant Measures; reprint of lectures given in 1940; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Pontrjagin, L. Topological Groups; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Bourbaki, N. Elements of Mathematics. Integration II, Chapters 7–9; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Nachbin, L. The Haar Integral; D. Van Nostrand Company, Inc.: New York, NY, USA, 1965. [Google Scholar]
- Montgomery, D.; Zippin, L. Topological Transformation Groups; Republication of 1974 edition; Dover: Mineola, NY, USA, 2018. [Google Scholar]
- Barut, A.O.; Raczka, R. Theory of Group Representations and Applications, 2nd ed.; World Scientific: Singapore, 1986. [Google Scholar]
- Chern, S.-S.; Chevalley, C. Élie Cartan and his mathematical work. Bull. Am. Math. Soc. 1952, 58, 157–216. [Google Scholar] [CrossRef]
- Knapp, A.W. Lie Groups, Lie Algebras, and Cohomology; Mathematical Notes 34; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Borel, A. Essays in the History of Lie Groups and Algebraic Groups; History of Mathematics 21; American Mathematical Society: Providence, RI, USA, 2001. [Google Scholar]
- Chirikjian, G.S. Stochastic Models, Information Theory, and Lie Groups, Volume I: Classical Results and Geometric Methods; Applied and Numerical Harmonic Analysis; Birkhäuser: Basel, Switzerland, 2009. [Google Scholar]
- Frankel, T. The Geometry of Physics: An Introduction, 3rd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces; Pure and Applied Mathematics; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Borel, A. Semisimple Groups and Riemannian Symmetric Spaces; Texts and Readings in Mathematics; Hindustan Book Agency: New Delhi, India, 1998. [Google Scholar]
- Einstein, A. Investigations on the Theory of the Brownian Movement; Fürth, R., Ed.; Cowper, A.D., Translator; Dover: Mineola, NY, USA, 1956. [Google Scholar]
- Lemons, D.S.; Gythiel, A. Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” cr acad. sci.(paris) 146, 530–533 (1908)]. Am. J. Phys. 1997, 65, 1079–1081. [Google Scholar] [CrossRef]
- Uhlenbeck, G.E.; Ornstein, L.S. On the theory of Brownian motion. Phys. Rev. 1930, 36, 823–841. [Google Scholar] [CrossRef]
- Feller, W. On the theory of stochastic processes, with particular reference to applications. In Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1949; pp. 403–432. Available online: https://projecteuclid.org/euclid.bsmsp/1166219215 (accessed on 10 August 2023).
- Stratonovich, R.L. Topics in the Theory of Random Noise, Volume I; Silverman, R.A., Translator; Reprint of 1963 edition; Martino Fine Publishing: Eastford, CT, USA, 2014. [Google Scholar]
- Stratonovich, R.L. Topics in the Theory of Random Noise, Volume II; Silverman, R.A., Translator; Gordon and Breach: Philadelphia, PA, USA, 1967. [Google Scholar]
- Itô, K. Stochastic differential equations in a differentiable manifold. Nagoya Math. J. 1950, 1, 35–47. [Google Scholar] [CrossRef]
- Itô, K.; McKean, H.P., Jr. Diffusion Processes and their Sample Paths: Reprint of the 1974 Edition; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed.; Springer Series in Synergetics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Gardiner, C. Elements of Stochastic Methods; AIP Publishing: Melville, NY, USA, 2021. [Google Scholar]
- Dressel, J.; Jordan, A.N. Quantum instruments as a foundation for both states and observables. Phys. Rev. A 2013, 88, 022107. [Google Scholar] [CrossRef]
- Caves, C.M. Quantum error correction and reversible operations. J. Supercond. 1999, 12, 707–718. [Google Scholar] [CrossRef]
- Rungta, P.; Bužek, V.; Caves, C.M.; Hillery, M.; Milburn, G.J. Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 2001, 64, 042315. [Google Scholar] [CrossRef]
- Menicucci, N.C. Superoperator Representation of Higher Dimensional Bloch Space Transformations. Ph.D. Advanced Project, Princeton University, Princeton, NJ, USA, 2005. [Google Scholar]
- Schumacher, B. Sending entanglement through noisy quantum channels. Phys. Rev. A 1996, 54, 2615–2628. [Google Scholar] [CrossRef]
- Combes, J.; Wiseman, H.M.; Scott, A.J. Replacing quantum feedback with open-loop control and quantum filtering. Phys. Rev. A 2010, 81, 020301(R). [Google Scholar] [CrossRef]
- Gross, J.A.; Caves, C.M.; Milburn, G.J.; Combes, J. Qubit models of weak continuous measurements: Markovian conditional and open-system dynamics. Quantum Sci. Technol. 2018, 3, 024005. [Google Scholar] [CrossRef]
- Brif, C.; Mann, A. Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A 1999, 59, 971–987. [Google Scholar] [CrossRef]
- Ali, S.T.; Antoine, J.-P.; Gazeau, J.-P. Coherent States. Wavelets. amd Their Generalizations, 2nd ed.; Theoretical and Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wiener, N. The average of an analytic functional. Proc. Natl. Acad. Sci. USA 1921, 7, 253–260. [Google Scholar] [CrossRef]
- Wiener, N. The average of an analytic functional and the Brownian movement. Proc. Natl. Acad. Sci. USA 1921, 7, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Wiener, N. The average value of a functional. Proc. Lond. Math. Soc. 1924, s2–s22, 454–467. [Google Scholar] [CrossRef]
- Kac, M. On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 1949, 65, 1–13. [Google Scholar] [CrossRef]
- Kac, M. Probability and Related Topics in Physical Sciences; Lectures in Applied Mathematics; American Mathematical Society: Providence, RI, USA, 1959; Volume I.A. [Google Scholar]
- Chaichian, M.; Demichev, A. Path Integrals in Physics. Volume I: Stochastic Processes and Quantum Mechanics; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kitaev, A. Notes on (2,) representations. arXiv 2018, arXiv:1711.08169. [Google Scholar]
- Feynman, R.P. Feynman’s PhD Thesis: A New Approach to Quantum Theory; Brown, L.M., Ed.; World Scientific: Singapore, 2005. [Google Scholar]
- Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef]
- Feynman, R.P.; Hibbs, A.R.; Styer, D.F. Quantum Mechanics and Path Integrals (Emended Edition); Dover: Mineola, NY, USA, 2010. [Google Scholar]
- Chantasri, A.; Jordan, A.N. Stochastic path-integral formalism for continuous quantum measurement. Phys. Rev. A 2015, 92, 032125. [Google Scholar] [CrossRef]
- Lewalle, P.; Chantasri, A.; Jordan, A.N. Prediction and characterization of multiple extremal paths in continuously monitored qubits. Phys. Rev. A 2017, 95, 042126. [Google Scholar] [CrossRef]
- Chantasri, A.; Atalaya, J.; Hacohen-Gourgy, S.; Martin, L.S.; Siddiqi, I.; Jordan, A.N. Stochastic continuous measurement of noncommuting observables: Quantum state correlations. Phys. Rev. A 2018, 97, 012118. [Google Scholar] [CrossRef]
- Kailath, T. A View of three decades of linear filtering theory. IEEE Trans. Inf. Theory 1974, 20, 146–181. [Google Scholar] [CrossRef]
- Magnus, W. On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 1954, 7, 649–673. [Google Scholar] [CrossRef]
- Hollander, R.M. The Magnus Expansion. Bachelor Project, University of Groningen, Groningen, The Netherlands, February 2017. Available online: fse.studenttheses.ub.rug.nl/14905/1/BSc_Mathematics_2017_Hollander_RM.pdf (accessed on 10 August 2023).
- Sharpe, R.W. Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany, 1997; Volume 166. [Google Scholar]
- Dixmier, J. Enveloping Algebras; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1996; Volume 11. [Google Scholar]
- Ali, S.T.; Engliš, M. Quantization methods: A guide for physicists and analysts. Rev. Math. Phys. 2005, 17, 391–490. [Google Scholar] [CrossRef]
- Wei, H.; Nazarov, Y.V. Statistics of measurement of noncommuting quantum variables: Monitoring and purification of a qubit. Phys. Rev. B 2008, 78, 045308. [Google Scholar] [CrossRef]
- Ruskov, R.; Korotkov, A.N.; Mølmer, K. Qubit state monitoring by three complementary observables. Phys. Rev. Lett. 2010, 105, 100506. [Google Scholar] [CrossRef]
- Ruskov, R.; Combes, J.; Mølmer, K.; Wiseman, H.M. Qubit purification speed-up for three complementary continuous measurements. Philos. Trans. R. Soc. A 2012, 370, 5291–5307. [Google Scholar] [CrossRef] [PubMed]
- Ficheux, Q.; Jezouin, S.; Leghtas, Z.; Huard, B. Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing. Nat. Commun. 2018, 9, 1926. [Google Scholar] [CrossRef]
- Hacohen-Gourgy, S.; Martin, L.S.; Flurin, E.; Ramasesh, V.V.; Whaley, K.B.; Siddiqi, I. Quantum dynamics of simultaneously measured non-commuting observables. Nature 2016, 538, 491–494. [Google Scholar] [CrossRef]
- Atalaya, J.; Hacohen-Gourgy, S.; Martin, L.S.; Siddiqi, I.; Korotkov, A.N. Correlators in simultaneous measurement of non-commuting qubit observables. npj Quantum Inf. 2018, 4, 41. [Google Scholar] [CrossRef]
- Weyl, H. Quantenmechanik and Gruppentheorie. Z. Für Phys. 1927, 46, 1–46. [Google Scholar] [CrossRef]
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 1949, 45, 99–124. [Google Scholar] [CrossRef]
- Schack, R.; Caves, C.M. Information-theoretic characterization of quantum chaos. Phys. Rev. E 1996, 53, 3257–3270. [Google Scholar] [CrossRef] [PubMed]
- Schack, R.; Caves, C.M. Chaos for Liouville probability densities. Phys. Rev. E 1996, 53, 3387–3401. [Google Scholar] [CrossRef] [PubMed]
- Klauder, J.R. The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 1960, 11, 123–168. [Google Scholar] [CrossRef]
- Radcliffe, J.M. Some properties of coherent spin states. J. Phys. A Gen. Phys. 1971, 4, 313–323. [Google Scholar] [CrossRef]
- Massar, S.; Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 1995, 74, 1259–1263. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Lo Presti, P.; Sacchi, M.F. A quantum measurement of the spin direction. Phys. Lett. A 2002, 292, 233–237. [Google Scholar] [CrossRef]
- Caldeira, A.O.; Leggett, A.J. Path integral approach to quantum Brownian motion. Physica 1983, 121A, 587–616. [Google Scholar] [CrossRef]
- Leggett, A.J.; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 1987, 59, 1. [Google Scholar] [CrossRef]
- Hu, B.L.; Paz, J.P.; Zhang, Y. Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D 1992, 45, 2843–2861. [Google Scholar] [CrossRef]
- Paz, J.P.; Habib, S.; Zurek, W.H. Reduction of the wave packet: Preferred observable and the decoherence time scale. Phys. Rev. D 1993, 47, 488–501. [Google Scholar] [CrossRef]
- Lewalle, P.; Steinmetz, J.; Jordan, A.N. Chaos in continuously monitored quantum systems: An optimal-path approach. Phys. Rev. A 2018, 98, 012141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, C.S.; Caves, C.M. Simultaneous Measurements of Noncommuting Observables: Positive Transformations and Instrumental Lie Groups. Entropy 2023, 25, 1254. https://doi.org/10.3390/e25091254
Jackson CS, Caves CM. Simultaneous Measurements of Noncommuting Observables: Positive Transformations and Instrumental Lie Groups. Entropy. 2023; 25(9):1254. https://doi.org/10.3390/e25091254
Chicago/Turabian StyleJackson, Christopher S., and Carlton M. Caves. 2023. "Simultaneous Measurements of Noncommuting Observables: Positive Transformations and Instrumental Lie Groups" Entropy 25, no. 9: 1254. https://doi.org/10.3390/e25091254
APA StyleJackson, C. S., & Caves, C. M. (2023). Simultaneous Measurements of Noncommuting Observables: Positive Transformations and Instrumental Lie Groups. Entropy, 25(9), 1254. https://doi.org/10.3390/e25091254