Analogue Hawking Radiation as a Tunneling in a Two-Level -Symmetric System
Abstract
:1. Introduction
2. Biorthogonality and Exceptional Point
3. A Two-Level PT-Symmetric Model
3.1. The Hamiltonian
3.2. The Tetrad Representation
4. Analogue Hawking Radiation and Tunneling Estimate
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Parity–time operator |
References
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292–3300. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220, Erratum in IBID 1976, 46, 206. [Google Scholar] [CrossRef]
- Page, D.N. Hawking radiation and black hole thermodynamics. New J. Phys. 2005, 7, 203. [Google Scholar] [CrossRef]
- Unruh, W.G.; Schützhold, R. Universality of the Hawking effect. Phys. Rev. D 2005, 71, 024028. [Google Scholar] [CrossRef] [Green Version]
- Volovik, G.E. Black hole and Hawking radiation by type-II Weyl fermions. JETP Lett. 2016, 104, 645–648. [Google Scholar] [CrossRef] [Green Version]
- Volovik, G.E.; Zhang, K. Lifshitz transitions, type-II Dirac and Weyl fermions, event horizon and all that. J. Low Temp. Phys. 2017, 189, 276–299. [Google Scholar] [CrossRef] [Green Version]
- Morice, C.; Moghaddam, A.G.; Chernyavsky, D.; van Wezel, J.; van den Brink, J. Synthetic gravitational horizons in low-dimensional quantum matter. Phys. Rev. Res. 2021, 3, L022022. [Google Scholar] [CrossRef]
- Sims, C. Topologically Protected Wormholes in Type-III Weyl Semimetal Co3In2X2 (X = S, Se). Condens. Matter 2021, 6, 18. [Google Scholar] [CrossRef]
- Leahy, D.A.; Unruh, W.G. Effects of a λϕ4 interaction on black-hole evaporation in two dimensions. Phys. Rev. D 1983, 28, 694–702. [Google Scholar] [CrossRef]
- Frasca, M. Hawking radiation and interacting fields. Eur. Phys. J. Plus 2017, 132, 467. [Google Scholar]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042–5045. [Google Scholar] [CrossRef] [Green Version]
- Painlevé, P. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. 1921, 173, 677–680. [Google Scholar]
- Gullstrand, A. llgemeine lösung des statischen einkörperproblems in der Einsteinschen gravitationstheorie. Ark. Mat. Astron. Fys. 1922, 16, 1. [Google Scholar]
- Kanai, Y.; Siino, M.; Hosoya, A. Gravitational collapse in Painlevé-Gullstrand coordinates. Prog. Theor. Phys. 2011, 125, 1053–1065. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, K.; Padmanabhan, T. Particle production and complex path analysis. Phys. Rev. D 1999, 60, 024007. [Google Scholar]
- Shankaranarayanan, S.; Padmanabhan, T.; Srinivasan, K. Hawking radiation in different coordinate settings: Complex paths approach. Class. Quant. Grav 2002, 19, 2671–2688. [Google Scholar]
- Akhmedov, E.T.; Akhmedova, V.; Singleton, D. Hawking temperature in the tunneling picture. Phys. Lett. B 2006, 642, 124–128. [Google Scholar]
- Akhmedov, E.T.; Akhmedova, V.; Singleton, D.; Pilling, T. Thermal radiation of various gravitational backgrounds. Int. J. Mod. Phys. A 2007, 22, 1705–1715. [Google Scholar] [CrossRef] [Green Version]
- Okugawa, R.; Murakami, S. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B 2014, 89, 235315. [Google Scholar] [CrossRef] [Green Version]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; An, J.H. Non-Hermitian Weyl semimetal and its Floquet engineering. Phys. Rev. B 2022, 105, L121113. [Google Scholar] [CrossRef]
- Yang, X.; Cao, Y.; Zhai, Y. Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk–boundary correspondence. Chin. Phys. B 2022, 31, 010308. [Google Scholar] [CrossRef]
- Yang, Z.; Chiu, C.K.; Fang, C.; Hu, J. Jones polynomial and knot transitions in Hermitian and non-Hermitian topological semimetals. Phys. Rev. Lett. 2020, 124, 186402. [Google Scholar] [CrossRef]
- De Beule, C.; Groenendijk, S.; Meng, T.; Schmidt, T.L. Artificial event horizons in Weyl semimetal heterostructures and their non-equilibrium signatures. Sci. Post Phys. 2021, 11, 95. [Google Scholar] [CrossRef]
- Sabsovich, D.; Wunderlich, P.; Fleurov, V.; Pikulin, D.I.; Ilan, R.; Meng, T. Hawking fragmentation and Hawking attenuation in Weyl semimetals. Phys. Rev. Res. 2022, 4, 013055. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, F.; Zhang, C. Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 2015, 115, 265304. [Google Scholar] [CrossRef] [Green Version]
- Soluyanov, A.A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II weyl semimetals. Nature 2015, 527, 495–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtala, P.; Volovik, G.E. Fermionic microstates within the Painlevé-Gullstrand black hole. J. Exp. Theor. Phys. 2002, 94, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Sirota, L. A classical-mechanical analogue of Hawking black hole radiation. In Proceedings of the 2022 Sixteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Sienna, Italy, 12–17 September 2022; pp. 205–207. [Google Scholar]
- Bagchi, B.; Sen, S. Artificial Hawking radiation, weak pseudo-Hermiticity, and Weyl semimetal blackhole analogy. J. Math. Phys. 2022, 63, 122102. [Google Scholar] [CrossRef]
- Stålhammar, M.; Larana-Aragon, J.; Rødland, L.; Kunst, F.K. symmetry-protected exceptional cones and analogue Hawking radiation. New J. Phys. 2023, 25, 043012. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators, 2nd ed.; Springer: Berlin, Germany, 1995. [Google Scholar]
- Heiss, W.D. Exceptional points of non-Hermitian operators. J. Phys. A Math. Gen. 2004, 37, 2455. [Google Scholar] [CrossRef] [Green Version]
- Heiss, W.D. The physics of exceptional points. J. Phys. A Math. Theor. 2012, 45, 444016. [Google Scholar] [CrossRef]
- Znojil, M. Exceptional points and domains of unitarity for a class of strongly non-Hermitian real-matrix Hamiltonians. J. Math. Phys. 2021, 62, 052103. [Google Scholar] [CrossRef]
- Correa, F.; Plyushchay, M.S. Spectral singularities in PT-symmetric periodic finite-gap systems. Phys. Rev. D 2012, 86, 085028. [Google Scholar]
- Cerjan, A.; Xiao, M.; Yuan, L.; Fan, S. Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges. Phys. Rev. B 2018, 97, 075128. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.D.; Huang, G.Y. Topological invariance and global Berry phase in non-Hermitian systems. Phys. Rev. A 2013, 87, 012118. [Google Scholar] [CrossRef] [Green Version]
- Longhi, S.; Feng, L. Complex Berry phase and imperfect non-Hermitian phase transitions. Phys. Rev. B 2023, 107, 085122. [Google Scholar]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar]
- Bender, C.M.; Dorey, P.E.; Dunning, C.; Fring, A.; Hook, D.W.; Jones, H.F.; Kuzhel, S.; Levai, G.; Tateo, R. -Symmetry. In Quantum and Classical Physics; World Scientific: Singapore, 2018. [Google Scholar]
- Noble, J.H.; Lubasch, M.; Stevens, J.; Jentschura, U.D. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts. Comp. Phys. Comm. 2017, 221, 304–316. [Google Scholar] [CrossRef]
- Weimann, S.; Kremer, M.; Plotnik, Y.; Lumer, Y.; Nolte, S.; Makris, K.G.; Segev, M.; Rechtsman, M.C.; Szameit, A. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 2017, 16, 433–438. [Google Scholar] [CrossRef]
- Yuce, C.; Oztas, Z. PT symmetry protected non-Hermitian topological systems. Sci. Rep. 2018, 8, 17416. [Google Scholar] [CrossRef] [Green Version]
- Goerbig, M.O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 2011, 83, 1193–1243. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V. Physics of nonhermitian degeneracies. Czech. J. Phys. 2004, 54, 1039–1047. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Jones, H.F.; Meister, B.K. Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 2007, 98, 040403. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Lasenby, A.N.; Hobson, M.P. Spherically-symmetric solutions in general relativity using a tetrad-based approach. Gen. Relativ. Gravit. 2018, 50, 29. [Google Scholar] [CrossRef] [Green Version]
- Bagchi, B.; Sen, S. Tunneling of hawking radiation for BTZ black hole revisited. Int. J. Mod. Phys. A 2022, 37, 2150252. [Google Scholar] [CrossRef]
- Akhmedova, V.; Pilling, T.; de Gill, A.; Singleton, D. Temporal contribution to gravitational WKB-like calculation. Phys. Lett. B 2008, 666, 269–271. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Pilling, T.; Singleton, D. Subtleties in the quasi-classical calculation of Hawking radiation. Int. J. Mod. Phys. A 2008, D17, 2453–2458. [Google Scholar] [CrossRef] [Green Version]
- Castelvecchi, D. Black-hole mimic triumphs. Nature 2016, 536, 258–259. [Google Scholar]
- Steinhauer, J. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nat. Phys. 2014, 10, 864–869. [Google Scholar]
- Drori, J.; Rosenberg, Y.; Bermudez, D.; Silberberg, Y.; Leonhardt, U. Observation of stimulated Hawking radiation in an optical analogue. Phys. Rev. Lett. 2019, 122, 010404. [Google Scholar] [CrossRef] [Green Version]
- Dente, A.D.; Bustos-Marún, R.A.; Pastawski, H.M. Dynamical regimes of a quantum SWAP gate beyond the Fermi golden rule. Phys. Rev. A 2008, 78, 062116. [Google Scholar]
- Bustos-Marún, R.A.; Coronado, E.A.; Pastawski, H.M. Buffering plasmons in nanoparticle waveguides at the virtual-localized transition. Phys. Rev. B 2010, 82, 035434. [Google Scholar]
- Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor. 2009, 42, 153001. [Google Scholar] [CrossRef]
- Kim, H. Hawking radiation as tunneling from charged black holes in 0A string theory. Phys. Lett. B 2011, 703, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Umetsu, K. Hawking Radiation from Kerr-Newman Black Hole and Tunneling Mechanism. Int. J. Mod. Phys. A 2010, 25, 4123–4140. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagchi, B.; Ghosh, R.; Sen, S.
Analogue Hawking Radiation as a Tunneling in a Two-Level
Bagchi B, Ghosh R, Sen S.
Analogue Hawking Radiation as a Tunneling in a Two-Level
Bagchi, Bijan, Rahul Ghosh, and Sauvik Sen.
2023. "Analogue Hawking Radiation as a Tunneling in a Two-Level
Bagchi, B., Ghosh, R., & Sen, S.
(2023). Analogue Hawking Radiation as a Tunneling in a Two-Level