Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation
Abstract
1. Introduction
2. Complex Potentials with Real Energy Levels
2.1. Constructions Using Perturbation Theory
2.2. Constructions Using —Symmetry
2.3. The Jones and Mateo Wrong-Sign Model with
2.4. The Buslaev and Grecchi Anharmonic Wrong-Sign Model
3. Hidden Hermitian Theory in Stationary Regime
3.1. Non-Hermitian Schrödinger Representation
3.2. The Case of Stationary Wrong-Sign Potentials
4. Quantum Theory in Non-Stationary Dynamical Regime
4.1. Evolution Equations for States
4.2. Physics behind the Equations
4.3. Heisenbergian Evolution Equations for Observables
5. Time-Dependent Wrong-Sign Oscillators
5.1. The Fring and Tenney Construction
5.2. Physical Background
5.3. Alternative, Physics-Motivated NIP Constructions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flügge, S. Practical Quantum Mechanics I; Springer: Berlin, Germany, 1971. [Google Scholar]
- Buslaev, V.; Grecchi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 1993, 26, 5541–5549. [Google Scholar] [CrossRef]
- Grecchi, V. (Bologna University, Bologna, Italy). Private communication, 16 February 2000.
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947–1118. [Google Scholar] [CrossRef][Green Version]
- Mostafazadeh, A. Pseudo-Hermitian Representation of Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef][Green Version]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bender, C.M.; Turbiner, A. Analytic continuation of eigenvalue problems. Phys. Lett. A 1993, 173, 442–446. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef][Green Version]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. 1992, 213, 74–101. [Google Scholar] [CrossRef]
- Bender, C.M. PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2018. [Google Scholar]
- Fring, A.; Tenney, R. Spectrally equivalent time-dependent double wells and unstable anharmonic oscillators. Phys. Lett. A 2020, 384, 126530. [Google Scholar] [CrossRef]
- Dieudonne, J. Quasi-Hermitian Operators. In Proceedings of the International Symposium on Linear Spaces; Pergamon: Oxford, UK, 1961; pp. 115–122. [Google Scholar]
- Messiah, A. Quantum Mechanics; North Holland: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Herbst, I. Dilation analyticity in constant electric field: I. The two body problem. Commun. Math. Phys. 1979, 64, 279. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Nonperturbative Square-Well Approximation to a Quantum Theory. J. Math. Phys. 1990, 31, 2579–2585. [Google Scholar]
- Jones, H.F.; Mateo, J. An Equivalent Hermitian Hamiltonian for the non-Hermitian -x4 Potential. Phys. Rev. D 2006, 73, 085002. [Google Scholar] [CrossRef][Green Version]
- Znojil, M. Time-dependent version of cryptohermitian quantum theory. Phys. Rev. D 2008, 78, 085003. [Google Scholar] [CrossRef][Green Version]
- Znojil, M. Three-Hilbert-space formulation of Quantum Mechanics. Symm. Integ. Geom. Meth. Appl. SIGMA 2009, 5, 001. [Google Scholar] [CrossRef]
- Znojil, M. Non-Hermitian interaction representation and its use in relativistic quantum mechanics. Ann. Phys. 2017, 385, 162–179. [Google Scholar] [CrossRef][Green Version]
- Brody, D.C. Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 2013, 47, 035305. [Google Scholar] [CrossRef][Green Version]
- Fring, A.; Tenney, R. Lewis-Riesenfeld invariants for PT-symmetrically coupled oscillators from two-dimensional point transformations and Lie algebraic expansions. J. Math. Phys. 2022, 63, 123509. [Google Scholar] [CrossRef]
- Bíla, H. Adiabatic time-dependent metrics in PT-symmetric quantum theories. arXiv 2009, arXiv:0902.0474. [Google Scholar]
- Christodoulides, D.; Yang, J.-K. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Znojil, M. Non-Hermitian Heisenberg representation. Phys. Lett. A 2015, 379, 20132017. [Google Scholar] [CrossRef][Green Version]
- Fring, A.; Moussa, M.H.Y. Unitary quantum evolution for time-dependent quasi-Hermitian systems with non-observable Hamiltonians. Phys. Rev. A 2016, 93, 042114. [Google Scholar] [CrossRef][Green Version]
- Luiz, F.S.; Pontes, M.A.; Moussa, M.H.Y. Unitarity of the time-evolution and observability of non-Hermitian Hamiltonians for time-dependent Dyson maps. Phys. Scr. 2020, 95, 065211. [Google Scholar] [CrossRef][Green Version]
- Ju, C.-Y.; Miranowicz, A.; Minganti, F.; Chan, C.-T.; Chen, G.-Y.; Nori, F. Einstein’s Quantum Elevator: Hermitization of Non-Hermitian Hamiltonians via a generalized vielbein Formalism. Phys. Rev. Res. 2022, 4, 023070. [Google Scholar] [CrossRef]
- Znojil, M. Systematics of quasi-Hermitian representations of non-Hermiitan quantum models. Ann. Phys. 2023, 448, 169198. [Google Scholar] [CrossRef]
- Bishop, R.F.; Znojil, M. Non-Hermitian coupled cluster method for non-stationary systems and its interaction-picture reinterpretation. Eur. Phys. J. Plus 2020, 135, 374. [Google Scholar] [CrossRef]
- Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B 1981, 188, 513–554. [Google Scholar] [CrossRef]
- Witten, E. Constraints on Supersymmetry Breaking. Nucl. Phys. B 1982, 202, 253–317. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Bender, C.M.; Wu, T.T. Anharmonic Oscillator. Phys. Rev. 1969, 184, 1231–1260. [Google Scholar] [CrossRef]
- Turbiner, A.; del Valle, D.C. Anharmonic oscillator: A solution. J. Phys. A Math. Theor. 2021, 54, 295404. [Google Scholar] [CrossRef]
- Fernández, F.; Guardiola, R.; Ros, J.; Znojil, M. Strong-coupling expansions for the PT-symmetric oscillators V(r) = aix + b(ix)2 + c(ix)3. J. Phys. A Math. Gen. 1998, 31, 10105–10112. [Google Scholar] [CrossRef]
- Caliceti, E.; Graffi, S.; Maioli, M. Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 1980, 75, 51–66. [Google Scholar] [CrossRef]
- Álvarez, G.; Casares, C. Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator. J. Phys. A Math. Gen. 2000, 33, 5171–5182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znojil, M. Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation. Entropy 2023, 25, 692. https://doi.org/10.3390/e25040692
Znojil M. Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation. Entropy. 2023; 25(4):692. https://doi.org/10.3390/e25040692
Chicago/Turabian StyleZnojil, Miloslav. 2023. "Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation" Entropy 25, no. 4: 692. https://doi.org/10.3390/e25040692
APA StyleZnojil, M. (2023). Non-Stationary Non-Hermitian “Wrong-Sign” Quantum Oscillators and Their Meaningful Physical Interpretation. Entropy, 25(4), 692. https://doi.org/10.3390/e25040692