# Landauer Bound and Continuous Phase Transitions

## Abstract

**:**

## 1. Introduction

## 2. Thermodynamic Entropy in Continuous Phase Transitions and Landauer Bound

## 3. Analog Computing Systems

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
**1961**, 5, 183–191. [Google Scholar] [CrossRef] - Landauer, R. Information Is Physical. Phys. Today
**1991**, 44, 23–29. [Google Scholar] [CrossRef] - Landauer, R. The Physical Nature of Information. Phys. Lett. A
**1996**, 217, 188–193. [Google Scholar] [CrossRef] - Szilard, L. Uber die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Z. Phys.
**1929**, 53, 840–856. [Google Scholar] [CrossRef] - Bennet, C.H. The thermodynamics of computation—A review. Int. J. Theor. Phys.
**1982**, 21, 905–940. [Google Scholar] [CrossRef] - Brillouin, L. Maxwell’s Demon Cannot Operate: Information and entropy. I. J. Appl. Phys.
**1951**, 22, 334–337. [Google Scholar] [CrossRef] - Brillouin, L. Physical Entropy and Information. II. J. Appl. Phys.
**1951**, 22, 338–343. [Google Scholar] [CrossRef] - Zivieri, R. Magnetic Skyrmions as Information Entropy Carriers. IEEE Trans. Magn.
**2022**, 58, 1500105. [Google Scholar] [CrossRef] - Zivieri, R. From Thermodynamics to Information: Landauer’s Limit and Negentropy Principle Applied to Magnetic Skyrmions. Front. Phys.
**2022**, 10, 769904. [Google Scholar] [CrossRef] - Berut, A.; Arakelyan, A.; Petrosyan, A.; Cilberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature
**2012**, 483, 187–189. [Google Scholar] [CrossRef] - Roland, E.; Martinez, I.A.; Parrondo, J.M.R.; Petrov, D. Universal features in the energetics of symmetry breaking. Nat. Phys.
**2014**, 10, 457. [Google Scholar] - Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-Precision Test of Landauer’s Principle in a Feedback Trap. Phys. Rev. Lett.
**2014**, 113, 190601. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hong, J.H.; Lambson, B.; Dhuey, S.; Bokor, J. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv.
**2016**, 2, e1501492. [Google Scholar] [CrossRef] [Green Version] - Maroney, O.J.E. Generalising Landauer’s principle. Phys. Rev. E
**2009**, 79, 031105. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kish, L.B.; Granqvist, C.G. Energy requirement of control: Comments on Szilard’s engine and Maxwell’s demon. Europhys. Lett.
**2012**, 98, 68001. [Google Scholar] [CrossRef] [Green Version] - Norton, J.D. All shook up: Fluctuations, Maxwell’s demon and the thermodynamics of computation. Entropy
**2013**, 15, 4432–4483. [Google Scholar] [CrossRef] [Green Version] - Sagawa, T. Thermodynamic and logical reversibilities revisited. J. Stat. Mech.
**2014**, 2014, 03025. [Google Scholar] [CrossRef] [Green Version] - Chiuchiu, D.; Diamantini, M.C.; Gammaitoni, L. Conditional entropy and Landauer principle. Europhys. Lett.
**2015**, 111, 40004. [Google Scholar] [CrossRef] [Green Version] - Parrondo, J.M.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nat. Phys.
**2015**, 11, 131–139. [Google Scholar] [CrossRef] - Gammaitoni, L. Beating the Landauer’s limit by trading energy with uncertainty. arXiv
**2011**, arXiv:1111.2937v1. [Google Scholar] - Sagawa, T.; Ueda, M. Nonequilibrium thermodynamics of feedback control. Phys. Rev. E
**2012**, 85, 021104. [Google Scholar] [CrossRef] [Green Version] - Sagawa, T.; Ueda, M. Minimal energy cost for thermodynamic information processing: Measurement and information erasure. Phys. Rev. Lett.
**2009**, 102, 250602. [Google Scholar] [CrossRef] [Green Version] - Diamantini, M.C.; Trugenberger, C.A. Generalized Landauer bound as a universal thermodynamic entropy in continuous phase transitions. Phys. Rev. E
**2014**, 89, 052138. [Google Scholar] [CrossRef] [Green Version] - Negele, J.W.; Orland, H. Quantum Many-Particle Systems; Addison-Wesley: Boston, MA, USA, 1998. [Google Scholar]
- Müller, B.; Reinhardt, J. Neural Networks; Springer: Berlin, Germany, 1990. [Google Scholar]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA
**1982**, 79, 2554. [Google Scholar] [CrossRef] [Green Version] - Diamantini, M.C.; Gammaitoni, L.; Trugenberger, C.A. Landauer bound for analog computing systems. Phys. Rev. E
**2016**, 94, 012139. [Google Scholar] [CrossRef] [Green Version] - Ihara, S. Information Theory for Continuous Systems; World Scientific: Singapore, 1993. [Google Scholar]
- Shannon, C.E. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Jaynes, E.T. Information Theory and Statistical Mechanics; Brandeis University Summer Institute Lectures in Theoretical Physics; Brandeis University: Waltham, MA, USA, 1963. [Google Scholar]
- Jaynes, E.T. Information Theory and Statistical Mechanics I. Phys. Rev.
**1957**, 106, 620–630. [Google Scholar] [CrossRef] - Jaynes, E.T. Information Theory and Statistical Mechanics II. Phys. Rev.
**1957**, 108, 171–190. [Google Scholar] [CrossRef] - Ash, R. Information Theory; Interscience Publication: New York, NY, USA, 1965. [Google Scholar]
- Wehrl, A. On the relation between classical and quantum-mechanical entropy. Rep. Math. Phys.
**1979**, 16, 353–358. [Google Scholar] [CrossRef] - Chiuchiu, D.; Lopez-Suarez, M.; Neri, I.; Diamantini, M.C.; Gammaitoni, L. Cost of remembering a bit of information. Phys. Rev. A
**2018**, 97, 052108. [Google Scholar] [CrossRef] [Green Version] - Mezard, M.; Parisi, G.; Virasoro, M.A. Spin Glass Theory and Beyond; World Scientific: Singapore, 1987. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Proesmans, K.; Ehrich, J.; Bechhoefer, J. Finite-time Landauer principle. Phys. Rev. Lett.
**2020**, 125, 100602. [Google Scholar] [CrossRef] - Van Vu, T.; Saito, K. Finite-time quantum Landauer principle and quantum coherence. Phys. Rev. Lett.
**2022**, 128, 010602. [Google Scholar] [CrossRef] [PubMed] - Hängi, P.; Ingold, G.L. Quantum Brownian motion and the Third Law of thermodynamics. Acta Phys. Pol. B
**2006**, 37, 1537. [Google Scholar] - Pathria, R.K. Statistical Mechanics; Pergamon Press: Oxford, UK, 1972. [Google Scholar]
- Fisher, M.E. Magnetism in one-dimensional systems—The Heisenberg model for infinite spin. Am. J. Phys.
**1964**, 32, 343–346. [Google Scholar] [CrossRef] - Millard, K.; Leff, H.S. Infinite-Spin Limit of the Quantum Heisenberg Model. J. Math. Phys.
**1971**, 12, 1000. [Google Scholar] [CrossRef] - Lieb, E.H. The classical limit of quantum spin systems. Commun. Math. Phys.
**1973**, 31, 327–340. [Google Scholar] [CrossRef] - Bekenstein, J.D. Entropy content and information flow in systems with limited energy. Phys. Rev. D
**1984**, 30, 1669. [Google Scholar] [CrossRef] - Loydd, S. Ultimate physical limits to computation. Nature
**2000**, 406, 1047. [Google Scholar] [CrossRef] [Green Version] - Feynman, R.P. There’s plenty of room at the bottom [data storage]. J. Microelectromech. Syst.
**1992**, 1, 60–66. [Google Scholar] [CrossRef] - Berdnikov, B.A. Quantum Magnets with an SO(n) Symmetry; MIT: Cambridge, MA, USA, 1998; and reference therein. [Google Scholar]
- Lieb, E.H.; Solovej, J.P. Proof of the Wehrl-type Entropy Conjecture for Symmmetric SU(N) Coherent States. Commun. Math. Phys.
**2016**, 348, 567–578. [Google Scholar] [CrossRef] [Green Version]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Diamantini, M.C.
Landauer Bound and Continuous Phase Transitions. *Entropy* **2023**, *25*, 984.
https://doi.org/10.3390/e25070984

**AMA Style**

Diamantini MC.
Landauer Bound and Continuous Phase Transitions. *Entropy*. 2023; 25(7):984.
https://doi.org/10.3390/e25070984

**Chicago/Turabian Style**

Diamantini, Maria Cristina.
2023. "Landauer Bound and Continuous Phase Transitions" *Entropy* 25, no. 7: 984.
https://doi.org/10.3390/e25070984