Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution
Abstract
:1. Introduction
2. Kaniadakis’ Generalized Exponential
3. Particle–Hole Symmetry
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
KMS | Kubo–Martin–Schwinger |
References
- Tahir, M.H.; Cordiero, G.M.; Alizadeh, M.; Hausoor, M.; Zubair, M.; Hamedami, G.G. The odd generalized exponential family of distributions with applications. J. Stat. Distrib. Appl. 2015, 2, 1. [Google Scholar] [CrossRef]
- Alizadeh, M.; Ghosh, I.; Yosouf, M.M.; Rusekhi, M.; Hamedami, G.G. The Generalized Odd Generalized Exponential Family of Distributions: Properties, Characteristics and Applications. J. Data Sci. 2017, 16, 443–465. [Google Scholar] [CrossRef]
- Renyi, A. On measures of information and entropy. In Proceedings of the 4th Berekeley Symposium on Mathematics, Statistics and Probability 1960; Statistical Laboratory of the University of California: Berkeley, CA, USA, 1961; p. 547. [Google Scholar]
- Zapirov, R.G. New Measures and Methods in Information Theory; Kazan State Technological University: Kazan, Russia, 2005. (In Russian) [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Nonadditive entropy: The concept and its use. Eur. Phys. J. 2009, 40, 257–266. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Non-Extensive Statistical Mechanics: Approaching a Complex World; Springer Science and Business Media LLC: New York, NY, USA, 2009. [Google Scholar]
- Kaniadakis, G. Theoretical foundations and mathematical formalism of the power law tailed statistical distributions. Entropy 2013, 15, 3983–4010. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef]
- Biro, T.S.; Kaniadakis, G. Two generalizations of the Boltzmann equation. Eur. Phys. J.-Condens. Matter Complex Syst. 2006, 50, 3–6. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Lavagno, A.; Quarati, P. Kinetic approach to fractional exlcusion statistics. Nucl. Phys. B 1996, 466, 527–537. [Google Scholar] [CrossRef]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. Stat. Mech. Its Appl. 2001, 296, 405–425. [Google Scholar] [CrossRef]
- Kaniadakis, G. Physical origin of the power-law tailed statistical distribution. Mod. Phys. Lett. B 2012, 26, 1250061. [Google Scholar] [CrossRef] [Green Version]
- Kaniadakis, G.; Scarfone, A.M. A new one-parameter deformation of the exponential function. Phys. Stat. Mech. Its Appl. 2002, 305, 69–75. [Google Scholar] [CrossRef]
- Sharp, K.; Matschinsky, F. Translation of Ludwig Boltzmann’s Paper “On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp 373-435 (Wien. Ber. 1877, 76:373-435). Reprinted in Wiss. Abhandlungen, Vol. II, reprint 42, p. 164-223, Barth, Leipzig, 1909. Entropy 2015, 17, 1971–2009. [Google Scholar] [CrossRef]
- Stirling, J. Methodus Differentialis Sive Tractatus de Summation et Interpolation Serierum Infinitorum; Typis Gul. Bowyer, impensis G. Strahan: London, UK, 1730. [Google Scholar]
- Michel, R. On Stirling’s Formula. Am. Math. Mon. 2002, 109, 388. [Google Scholar] [CrossRef]
- Mortici, C. A substantial improvement of the Stirling formula. App. Math. Lett. 2011, 24, 1351–1354. [Google Scholar] [CrossRef]
- Aissen, M.I. Some Remarks on Stirling’s Formula. Am. Math. Mon. 2018, 61, 687–691. [Google Scholar] [CrossRef]
- Jaynes, E.T. Gibbs vs Boltzmann entropies. Am. J. Phys. 1965, 33, 391–398. [Google Scholar] [CrossRef]
- Riedl, M.; Müller, A.; Wessel, N. Practical considerations of permutation entropy: A tutorial review. Eur. Phys. J. Spec. Top. 2013, 222, 249–262. [Google Scholar] [CrossRef]
- Biro, T.S. Is There a Temperature? Conceptual Challenges at High Energy, Acceleration and Complexity; Springer Science and Business Media LLC: New York, NY, USA, 2011. [Google Scholar]
- Hanel, R.; Thurner, S.; Gell-Mann, M. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems. Proc. Natl. Acad. Sci. USA 2004, 111, 6905–6910. [Google Scholar] [CrossRef]
- Khinchin, A.J. On the book of B. V. Gnedenko and A. N. Kolmogorov, “Limit distributions for sums of independent random variables”, awarded the Chebyshev Prize. Uspekhi Mat. Nauk 1953, 7, 239–241. [Google Scholar]
- Khinchin, A.J. On the basic theorems of information theory. Uspekhi Mat. Nauk 1956, 9, 17. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics I. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. 1957, 108, 171. [Google Scholar] [CrossRef]
- Shore, J.E.; Johnson, R.W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef]
- Biro, T.S.; Shen, K.M.; Zhang, B.W. Non-Extensive Quantum Statistics with Particle-Hole Symmetry. Phys. Stat. Mech. Its Appl. 2015, 428, 410–415. [Google Scholar] [CrossRef]
- Aliano, A.; Kaniadakis, G.; Miraldi, E. Bose-Einstein condensation in the framework of kappa-statistics. Phys. Condens. Matter 2003, 325, 35–40. [Google Scholar] [CrossRef]
- Teweldeberhan, A.M.; Miller, H.G.; Tegans, R. κ-deformed statistics and the formation of quark-gluon plasma. Int. J. Mod. Phys. E 2003, 12, 669–673. [Google Scholar] [CrossRef]
- Abul-Magd, A.Y. Nonextensive random-matrix theory based on Kaniadakis entropy. Phys. Lett. A 2007, 361, 450–454. [Google Scholar] [CrossRef]
- Tempesta, P. Group entropies, conservation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar] [CrossRef]
- Kubo, R. Statistical Mechanical Theory of Irreversible Processes I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Martin, P.C.; Schwinger, J. Theory of Many-Particle Sytems I. Phys. Rev. 1959, 115, 1342. [Google Scholar] [CrossRef]
- Haag, R.; Winnink, H.; Hugenholtz, N.M. On the equilibrium states in quantum statistical meachanics. Commun. Math. Phys. 1967, 5, 215–236. [Google Scholar] [CrossRef]
- Biro, T.S.; Jakovac, A. Emergence of Temperature in Examples and Related Nuisances in Field Theory; Springer: Cham, Switzerland, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biró, T.S. Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution. Entropy 2022, 24, 1217. https://doi.org/10.3390/e24091217
Biró TS. Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution. Entropy. 2022; 24(9):1217. https://doi.org/10.3390/e24091217
Chicago/Turabian StyleBiró, Tamás S. 2022. "Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution" Entropy 24, no. 9: 1217. https://doi.org/10.3390/e24091217
APA StyleBiró, T. S. (2022). Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution. Entropy, 24(9), 1217. https://doi.org/10.3390/e24091217