# Quantum Thermodynamic Uncertainty Relations, Generalized Current Fluctuations and Nonequilibrium Fluctuation–Dissipation Inequalities

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Fluctuations on Center Stage

#### 1.1.1. Nonequilibrium Relations

#### 1.1.2. Fluctuations of Generalized Current

#### 1.2. This Work—Key Findings and Organization

## 2. Stochastic Dynamics of Gaussian Systems: 2nd and Higher-Order Correlations

#### 2.1. Fluctuations and Stochastic Dynamics of Open Quantum Systems

#### 2.2. Fluctuation–Dissipation Inequality and Robertson–Schrödinger Relation

## 3. Energy Flow and Entropy Production

## 4. Quantum Thermodynamic Uncertainty Relation

#### 4.1. Thermal Fluctuation–Dissipation Inequality

#### 4.2. Numerical Results and Quantifying Error

## 5. Nonequilibrium Current, Energy Flow, and Current Fluctuations

#### 5.1. Generalized Current Fluctuations

#### 5.2. Non-Markovianity of the Damping Kernel

## 6. Nonequilibrium Steady State and Connection to Heat Transfer

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Langevin Equation and Uncertainty Relations

#### Appendix A.1. Fluctuation–Dissipation Inequality

#### Appendix A.2. Robertson–Schrödinger Inequality

## Appendix B. Wick’s Theorem for Thermal States

## Appendix C. Fluctuating Energy Flow

## Appendix D. Master Equation, Density Matrix, and Von Neumann Entropy

## Appendix E. Bath Spectral Density and Dissipation Kernel

## Appendix F. Analytical and Numerical Treatment of the Correlation Functions

## Appendix G. Current–Current Fluctuations in Steady-State Heat Transfer

## References

- Barato, A.C.; Seifert, U. Thermodynamic Uncertainty Relation for Biomolecular Processes. Phys. Rev. Lett.
**2015**, 114, 158101. [Google Scholar] [CrossRef] [Green Version] - Gingrich, T.R.; Horowitz, J.M.; Perunov, N.; England, J.L. Dissipation Bounds All Steady-State Current Fluctuations. Phys. Rev. Lett.
**2016**, 116, 120601. [Google Scholar] [CrossRef] [Green Version] - Dechant, A.; Sasa, S.-I. Entropic bounds on currents in Langevin systems. Phys. Rev. E
**2018**, 97, 062101. [Google Scholar] [CrossRef] [Green Version] - Barato, A.C.; Chetrite, R.; Faggionato, A.; Gabrielli, D. A unifying picture of generalized thermodynamic uncertainty relations. J. Stat. Mech. Theory Exp.
**2019**, 2019, 084017. [Google Scholar] [CrossRef] [Green Version] - Saryal, S.; Friedman, H.M.; Segal, D.; Agarwalla, B.K. Thermodynamic uncertainty relation in thermal transport. Phys. Rev. E
**2019**, 100, 042101. [Google Scholar] [CrossRef] [Green Version] - Hasegawa, Y. Quantum Thermodynamic Uncertainty Relation for Continuous Measurement. Phys. Rev. Lett.
**2020**, 125, 050601. [Google Scholar] [CrossRef] - Hasegawa, Y. Thermodynamic Uncertainty Relation for General Open Quantum Systems. Phys. Rev. Lett.
**2021**, 126, 010602. [Google Scholar] [CrossRef] - Menczel, P.; Loisa, E.; Brandner, K.; Flindt, C. Thermodynamic uncertainty relations for coherently driven open quantum systems. J. Phys. A Math. Theor.
**2021**, 54, 314002. [Google Scholar] [CrossRef] - Horowitz, J.M.; Gingrich, T.R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys.
**2020**, 16, 15. [Google Scholar] [CrossRef] - Falasco, G.; Esposito, M.; Delvenne, J.-C. Unifying thermodynamic uncertainty relations. New J. Phys.
**2020**, 22, 053046. [Google Scholar] [CrossRef] - Falasco, G.; Esposito, M.; Delvenne, J.-C. Beyond thermodynamic uncertainty relations: Nonlinear response, error-dissipation trade-offs, and speed limits. J. Phys. A Math. Theor.
**2022**, 55, 124002. [Google Scholar] [CrossRef] - Gingrich, T.R.; Rotskoff, G.M.; Horowitz, J.M. Inferring dissipation from current fluctuations. J. Phys. A Math. Theor.
**2017**, 50, 184004. [Google Scholar] [CrossRef] [Green Version] - Van Vu, T.; Hasegawa, Y. Uncertainty relations for underdamped Langevin dynamics. Phys. Rev. E
**2019**, 100, 032130. [Google Scholar] [CrossRef] [Green Version] - Carollo, F.; Jack, R.L.; Garrahan, J.P. Unraveling the Large Deviation Statistics of Markovian Open Quantum Systems. Phys. Rev. Lett.
**2019**, 122, 130605. [Google Scholar] [CrossRef] [Green Version] - Hasegawa, Y.; Van Vu, T. Fluctuation Theorem Uncertainty Relation. Phys. Rev. Lett.
**2019**, 123, 110602. [Google Scholar] [CrossRef] [Green Version] - Saryal, S.; Sadekar, O.; Agarwalla, B.K. Thermodynamic uncertainty relation for energy transport in a transient regime: A model study. Phys. Rev. E
**2021**, 103, 022141. [Google Scholar] [CrossRef] [PubMed] - Falasco, G.; Esposito, M. Dissipation-Time Uncertainty Relation. Phys. Rev. Lett.
**2020**, 125, 120604. [Google Scholar] [CrossRef] - Dong, H.; Reiche, D.; Hsiang, J.-T.; Hu, B.-L. Quantum Thermodynamic Uncertainties in Nonequilibrium Systems from Robertson-Schrödinger Relations. Entropy
**2022**, 24, 870. [Google Scholar] [CrossRef] - Hsiang, J.-T.; Hu, B.-L. Nonequilibrium quantum free energy and effective temperature, generating functional, and influence action. Phys. Rev. D
**2021**, 103, 065001. [Google Scholar] [CrossRef] - Bongs, K.; Holynski, M.; Vovrosh, J.; Bouyer, P.; Condon, G.; Rasel, E.; Schubert, C.; Schleich, W.P.; Roura, A. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys.
**2019**, 1, 731. [Google Scholar] [CrossRef] [Green Version] - Frye, K.; Abend, S.; Bartosch, W.; Bawamia, A.; Becker, D.; Blume, H.; Braxmaier, C.; Chiow, S.-W.; Efremov, M.A.; Ertmer, W.; et al. The Bose-Einstein Condensate and Cold Atom Laboratory. EPJ Quantum Technol.
**2021**, 8, 1. [Google Scholar] [CrossRef] - Gong, T.; Corrado, M.R.; Mahbub, A.R.; Shelden, C.; Munday, J.N. Recent progress in engineering the Casimir effect–applications to nanophotonics, nanomechanics, and chemistry. Nanophotonics
**2021**, 10, 523. [Google Scholar] [CrossRef] - Reiche, D.; Intravaia, F.; Busch, K. Wading through the void: Exploring quantum friction and nonequilibrium fluctuations. APL Photonics
**2022**, 7, 030902. [Google Scholar] [CrossRef] - Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift Physik
**1927**, 43, 172. [Google Scholar] [CrossRef] - Robertson, H.P. The Uncertainty Principle. Phys. Rev.
**1929**, 34, 163. [Google Scholar] [CrossRef] - Schrödinger, E. Zum Heisenbergschen Unschärfeprinzip. S.B. Preuss. Akad. Wiss. Physik. Math. Klasse
**1930**, XIX, 418. [Google Scholar] - Hu, B.-L.; Zhang, Y. Squeezed States and uncertainty relation at finite temperature. Mod. Phys. Lett. A
**1993**, 8, 3575. [Google Scholar] [CrossRef] [Green Version] - Hu, B.L.; Zhang, Y. Uncertainty relation for a quantum open system. Int. J. Mod. Phys. A
**1995**, 10, 4537. [Google Scholar] [CrossRef] [Green Version] - Koks, D.; Matacz, A.; Hu, B.-L. Entropy and uncertainty of squeezed quantum open systems. Phys. Rev. D
**1997**, 55, 5917. [Google Scholar] [CrossRef] [Green Version] - Callen, H.B.; Welton, T.A. Irreversibility and Generalized Noise. Phys. Rev.
**1951**, 83, 34. [Google Scholar] [CrossRef] - Kubo, R. The fluctuation–dissipation theorem. Rep. Prog. Phys.
**1966**, 29, 255. [Google Scholar] [CrossRef] [Green Version] - Li, X.L.; Ford, G.W.; O’Connell, R.F. Energy balance for a dissipative system. Phys. Rev. E
**1993**, 48, 1547. [Google Scholar] [CrossRef] - Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett.
**1997**, 78, 2690. [Google Scholar] [CrossRef] [Green Version] - Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E
**1999**, 60, 2721. [Google Scholar] [CrossRef] [Green Version] - Hatano, T.; Sasa, S.-I. Steady-State Thermodynamics of Langevin Systems. Phys. Rev. Lett.
**2001**, 86, 3463. [Google Scholar] [CrossRef] [Green Version] - Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys.
**2009**, 81, 1665. [Google Scholar] [CrossRef] [Green Version] - Campisi, M.; Hänggi, P.; Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys.
**2011**, 83, 771. [Google Scholar] [CrossRef] [Green Version] - Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys.
**2012**, 75, 126001. [Google Scholar] [CrossRef] [Green Version] - Deffner, S.; Campbell, S. Quantum Thermodynamics; Morgan & Claypool Publishers: San Rafael, CA, USA, 2019; pp. 2053–2571. [Google Scholar]
- Eckhardt, W. Macroscopic theory of electromagnetic fluctuations and stationary radiative heat transfer. Phys. Rev. A
**1984**, 29, 1991. [Google Scholar] [CrossRef] - Seifert, U.; Speck, T. fluctuation–dissipation theorem in nonequilibrium steady states. EPL Europhys. Lett.
**2010**, 89, 10007. [Google Scholar] [CrossRef] - Intravaia, F.; Behunin, R.O.; Dalvit, D.A.R. Quantum friction and fluctuation theorems. Phys. Rev. A
**2014**, 89, 050101. [Google Scholar] [CrossRef] [Green Version] - López, A.E.R.; Poggi, P.M.; Lombardo, F.C.; Giannini, V. Landauer’s formula breakdown for radiative heat transfer and nonequilibrium Casimir forces. Phys. Rev. A
**2018**, 97, 042508. [Google Scholar] [CrossRef] [Green Version] - Hsiang, J.-T.; Hu, B.-L. fluctuation–dissipation relation for open quantum systems in a nonequilibrium steady state. Phys. Rev. D
**2020**, 102, 105006. [Google Scholar] [CrossRef] - Maes, C. Response Theory: A Trajectory-Based Approach. Front. Phys.
**2020**, 8, 229. [Google Scholar] [CrossRef] - Maes, C. Fluctuating Motion in an Active Environment. Phys. Rev. Lett.
**2020**, 125, 208001. [Google Scholar] [CrossRef] - Caprini, L. Generalized fluctuation–dissipation relations holding in non-equilibrium dynamics. J. Stat. Mech. Theory Exp.
**2021**, 2021, 063202. [Google Scholar] [CrossRef] - Caprini, L.; Puglisi, A.; Sarracino, A. Fluctuation–Dissipation Relations in Active Matter Systems. Symmetry
**2021**, 13, 81. [Google Scholar] [CrossRef] - Fleming, C.H.; Hu, B.L.; Roura, A. Nonequilibrium fluctuation–dissipation inequality and nonequilibrium uncertainty principle. Phys. Rev. E
**2013**, 88, 012102. [Google Scholar] [CrossRef] [Green Version] - Reiche, D.; Intravaia, F.; Hsiang, J.-T.; Busch, K.; Hu, B.-L. Nonequilibrium thermodynamics of quantum friction. Phys. Rev. A
**2020**, 102, 050203. [Google Scholar] [CrossRef] - Reiche, D. Long-Time Correlations in Nonequilibrium Dispersion Forces, Mathematisch-Naturwissenschaftliche Fakultät. Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2021. [Google Scholar]
- Pagel, D.; Nalbach, P.; Alvermann, A.; Fehske, H.; Thorwart, M. Nonequilibrium quantum fluctuation relations for harmonic systems in nonthermal environments. New J. Phys.
**2013**, 15, 105008. [Google Scholar] [CrossRef] - Rammer, J. Quantum Field Theory of Non-Equilibrium States; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems, 2nd ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Schwinger, J. Brownian Motion of a Quantum Oscillator. J. Math. Phys.
**1961**, 2, 407. [Google Scholar] [CrossRef] - Feynman, R.; Vernon, F. The Theory of a General Quantum System Interacting with a Linear Dissipative System. Ann. Phys.
**1963**, 24, 118. [Google Scholar] [CrossRef] [Green Version] - Caldeira, A.; Leggett, A. Path integral approach to quantum Brownian motion. Phys. A Stat. Mech. Its Appl.
**1983**, 121, 587. [Google Scholar] [CrossRef] - Grabert, H.; Schramm, P.; Ingold, G.-L. Quantum Brownian motion: The functional integral approach. Phys. Rep.
**1988**, 168, 115. [Google Scholar] [CrossRef] - Hu, B.-L.; Paz, J.P.; Zhang, Y. Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise. Phys. Rev. D
**1992**, 45, 2843. [Google Scholar] [CrossRef] - Hu, B.-L.; Paz, J.P.; Zhang, Y. Quantum Brownian motion in a general environment. II. Nonlinear coupling and perturbative approach. Phys. Rev. D
**1993**, 47, 1576. [Google Scholar] [CrossRef] - Halliwell, J.J.; Yu, T. Alternative derivation of the Hu-Paz-Zhang master equation of quantum Brownian motion. Phys. Rev. D
**1996**, 53, 2012. [Google Scholar] [CrossRef] [Green Version] - Calzetta, E.; Roura, A.; Verdaguer, E. Master Equation for Quantum Brownian Motion Derived by Stochastic Methods. Int. J. Theor. Phys.
**2001**, 40, 2317. [Google Scholar] [CrossRef] [Green Version] - Calzetta, E.; Roura, A.; Verdaguer, E. Stochastic description for open quantum systems. Phys. A Stat. Mech. Its Appl.
**2003**, 319, 188. [Google Scholar] [CrossRef] [Green Version] - Hänggi, P.; Ingold, G.-L. Fundamental aspects of quantum Brownian motion. Chaos Interdiscip. J. Nonlinear Sci.
**2005**, 15, 026105. [Google Scholar] [CrossRef] [Green Version] - Ford, G.W.; Lewis, J.T.; O’Connell, R.F. Quantum Langevin equation. Phys. Rev. A
**1988**, 37, 4419. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ford, G.; O’Connell, R. Radiation reaction in electrodynamics and the elimination of runaway solutions. Phys. Lett. A
**1991**, 157, 217. [Google Scholar] [CrossRef] - Ford, G.W.; O’Connell, R.F. Exact solution of the Hu-Paz-Zhang master equation. Phys. Rev. D
**2001**, 64, 105020. [Google Scholar] [CrossRef] [Green Version] - Intravaia, F.; Maniscalco, S.; Messina, A. Density-matrix operatorial solution of the non-Markovian master equation for quantum Brownian motion. Phys. Rev. A
**2003**, 67, 042108. [Google Scholar] [CrossRef] [Green Version] - Calzetta, E.A.; Hu, B.L. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Fleming, C.; Roura, A.; Hu, B.-L. Exact analytical solutions to the master equation of quantum Brownian motion for a general environment. Ann. Phys.
**2011**, 326, 1207. [Google Scholar] [CrossRef] [Green Version] - Hsiang, J.-T.; Chou, C.Y.; Subaşı, Y.; Hu, B.L. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law. Phys. Rev. E
**2018**, 97, 012135. [Google Scholar] [CrossRef] [Green Version] - Ford, G.W.; O’Connell, R.F. There is No Quantum Regression Theorem. Phys. Rev. Lett.
**1996**, 77, 798. [Google Scholar] [CrossRef] [Green Version] - Ford, G.W.; O’Connell, R.F. The rotating wave approximation (RWA) of quantum optics: Serious defect. Physica A
**1997**, 243, 377. [Google Scholar] [CrossRef] - Fleming, C.; Cummings, N.I.; Anastopoulos, D.; Hu, B.L. The rotating-wave approximation: Consistency and applicability from an open quantum system analysis. J. Phys. A Math. Theor.
**2010**, 43, 405304. [Google Scholar] [CrossRef] [Green Version] - Ford, G.W.; Kac, M.; Mazur, P. Statistical Mechanics of Assemblies of Coupled Oscillators. J. Math. Phys.
**1965**, 6, 504. [Google Scholar] [CrossRef] - Ford, G.; Lewis, J.; O’Connell, R. Quantum oscillator in a blackbody radiation field II. Direct calculation of the energy using the fluctuation–dissipation theorem. Ann. Phys.
**1988**, 185, 270. [Google Scholar] [CrossRef] [Green Version] - Joos, E.; Zeh, H.D. The emergence of classical properties through interaction with the environment. Zeitschrift Physik B Condens. Matter
**1985**, 59, 223. [Google Scholar] [CrossRef] - Colla, A.; Breuer, H.-P. Entropy production and the role of correlations in quantum Brownian motion. Phys. Rev. A
**2021**, 104, 052408. [Google Scholar] [CrossRef] - Pucci, L.; Esposito, M.; Peliti, L. Entropy production in quantum Brownian motion. J. Stat. Mech. Theory Exp.
**2013**, 2013, P04005. [Google Scholar] [CrossRef] [Green Version] - Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys.
**1975**, 44, 129. [Google Scholar] [CrossRef] - Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys.
**2017**, 89, 015002. [Google Scholar] [CrossRef] [Green Version] - Hertz, A.; Jabbour, M.G.; Cerf, N.J. Entropy-power uncertainty relations: Towards a tight inequality for all Gaussian pure states. J. Phys. A Math. Theor.
**2017**, 50, 385301. [Google Scholar] [CrossRef] [Green Version] - Van Herstraeten, Z.; Cerf, N.J. Quantum Wigner entropy. Phys. Rev. A
**2021**, 104, 042211. [Google Scholar] [CrossRef] - Adesso, G.; Girolami, D.; Serafini, A. Measuring Gaussian Quantum Information and Correlations Using the Rényi Entropy of Order 2. Phys. Rev. Lett.
**2012**, 109, 190502. [Google Scholar] [CrossRef] [Green Version] - Caldeira, A.; Leggett, A. Quantum tunnelling in a dissipative system. Ann. Phys.
**1983**, 149, 374. [Google Scholar] [CrossRef] - Grabert, H.; Schramm, P.; Ingold, G.-L. Localization and anomalous diffusion of a damped quantum particle. Phys. Rev. Lett.
**1987**, 58, 1285. [Google Scholar] [CrossRef] [PubMed] - Dalvit, D.; Milloni, P.; Roberts, D.; da Rosa, F. Lecture Notes in Physics 834: Casimir Physics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Pendry, J.B. Shearing the vacuum-quantum friction. J. Phys. Condens. Matter
**1997**, 9, 10301. [Google Scholar] [CrossRef] - Intravaia, F. Vacuum Incalescence. arXiv
**2016**, arXiv:1604.02990. [Google Scholar] - Intravaia, F.; Behunin, R.O.; Henkel, C.; Busch, K.; Dalvit, D.A.R. Failure of Local Thermal Equilibrium in Quantum Friction. Phys. Rev. Lett.
**2016**, 117, 100402. [Google Scholar] [CrossRef] [Green Version] - Dalibard, J.; Dupont-Roc, J.; Cohen-Tannoudji, C. Vacuum fluctuations and radiation reaction: Identification of their respective contributions. J. Phys.
**1982**, 43, 1617. [Google Scholar] [CrossRef] - Senitzky, I.R. Comment on “Energy balance for a dissipative system”. Phys. Rev. E
**1995**, 51, 5166. [Google Scholar] [CrossRef] - Li, X.L.; Ford, G.W.; O’Connell, R.F. Reply to “Comment on ‘Energy balance for a dissipative system’ ”. Phys. Rev. E
**1995**, 51, 5169. [Google Scholar] [CrossRef] - Hsiang, J.-T.; Hu, B.-L. Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance. Ann. Phys.
**2015**, 362, 139. [Google Scholar] [CrossRef] [Green Version] - Barton, G. Near-Field Heat Flow Between Two Quantum Oscillators. J. Stat. Phys.
**2016**, 165, 1153. [Google Scholar] [CrossRef] [Green Version] - Saito, K.; Dhar, A. Generating function formula of heat transfer in harmonic networks. Phys. Rev. E
**2011**, 83, 041121. [Google Scholar] [CrossRef] [Green Version] - Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Dhar, A.; Shastry, B.S. Quantum transport using the Ford-Kac-Mazur formalism. Phys. Rev. B
**2003**, 67, 195405. [Google Scholar] [CrossRef] [Green Version] - Rieder, Z.; Lebowitz, J.L.; Lieb, E. Properties of a Harmonic Crystal in a Stationary Nonequilibrium State. J. Math. Phys.
**1967**, 8, 1073. [Google Scholar] [CrossRef] - Polder, D.; Van Hove, M. Theory of Radiative Heat Transfer between Closely Spaced Bodies. Phys. Rev. B
**1971**, 4, 3303. [Google Scholar] [CrossRef] - Pekola, J.P.; Karimi, B. Colloquium: Quantum heat transport in condensed matter systems. Rev. Mod. Phys.
**2021**, 93, 041001. [Google Scholar] [CrossRef] - Saito, K.; Dhar, A. Fluctuation Theorem in Quantum Heat Conduction. Phys. Rev. Lett.
**2007**, 99, 180601. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhan, F.; Denisov, S.; Hänggi, P. Electronic heat transport across a molecular wire: Power spectrum of heat fluctuations. Phys. Rev. B
**2011**, 84, 195117. [Google Scholar] [CrossRef] [Green Version] - Dechant, A.; Sasa, S.I. Current fluctuations and transport efficiency for general Langevin systems. J. Stat. Mech. Theory Exp.
**2018**, 2018, 063209. [Google Scholar] [CrossRef] [Green Version] - Tang, G.; Wang, J.-S. Heat transfer statistics in extreme-near-field radiation. Phys. Rev. B
**2018**, 98, 125401. [Google Scholar] [CrossRef] [Green Version] - Talkner, P.; Hänggi, P. Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical. Rev. Mod. Phys.
**2020**, 92, 041002. [Google Scholar] [CrossRef] - Dechant, A.; Sasa, S.-I. Improving Thermodynamic Bounds Using Correlations. Phys. Rev. X
**2021**, 11, 041061. [Google Scholar] [CrossRef] - Olver, F.W.J.; Daalhuis, A.B.O.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Release 1.0.25 of 2019-12-15. Available online: http://dlmf.nist.gov/ (accessed on 1 July 2022).
- Wick, G.C. The Evaluation of the Collision Matrix. Phys. Rev.
**1950**, 80, 268. [Google Scholar] [CrossRef] - Peskin, M.E.; Schroeder, D.V. An Introduction To Quantum Field Theory; Addison Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Evans, T.S.; Steer, D.A. Wick’s theorem at finite temperature. Nucl. Phys. B
**1996**, 474, 481. [Google Scholar] [CrossRef] [Green Version] - Plimak, L.I.; Stenholm, S. Causal signal transmission by quantum fields. IV. The causal Wick theorem. Phys. Rev. D
**2011**, 84, 065025. [Google Scholar] [CrossRef] [Green Version] - van Leeuwen, R.; Stefanucci, G. Wick theorem for general initial states. Phys. Rev. B
**2012**, 85, 115119. [Google Scholar] [CrossRef] [Green Version] - Karrlein, R.; Grabert, H. Exact time evolution and master equations for the damped harmonic oscillator. Phys. Rev. E
**1997**, 55, 153. [Google Scholar] [CrossRef] [Green Version] - Kristensen, P.T.; Herrmann, K.; Intravaia, F.; Busch, K. Modeling electromagnetic resonators using quasinormal modes. Adv. Opt. Photonics
**2020**, 12, 612. [Google Scholar] [CrossRef] [Green Version] - Einsiedler, S.; Ketterer, A.; Breuer, H.-P. Non-Markovianity of quantum Brownian motion. Phys. Rev. A
**2020**, 102, 022228. [Google Scholar] [CrossRef] - Joulain, K.; Carminati, R.; Mulet, J.-P.; Greffet, J.-J. Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B
**2003**, 68, 245405. [Google Scholar] [CrossRef] [Green Version] - Strasberg, P.; Esposito, M. Response Functions as Quantifiers of Non-Markovianity. Phys. Rev. Lett.
**2018**, 121, 040601. [Google Scholar] [CrossRef] [Green Version] - Intravaia, F.; Oelschläger, M.; Reiche, D.; Dalvit, D.A.R.; Busch, K. Quantum Rolling Friction. Phys. Rev. Lett.
**2019**, 123, 120401. [Google Scholar] [CrossRef] [Green Version] - Klatt, J.; Kropf, C.M.; Buhmann, S.Y. Open Quantum Systems’ Decay across Time. Phys. Rev. Lett.
**2021**, 126, 210401. [Google Scholar] [CrossRef] [PubMed] - Oelschläger, M.; Reiche, D.; Egerland, C.H.; Busch, K.; Intravaia, F. Electromagnetic Viscosity in Complex Structured Environments: From black-body to Quantum Friction. arXiv
**2021**, arXiv:2110.13635. [Google Scholar] - Das, A.; Dhar, A.; Santra, I.; Satpathi, U.; Sinha, S. Quantum Brownian motion: Drude and Ohmic baths as continuum limits of the Rubin model. Phys. Rev. E
**2020**, 102, 062130. [Google Scholar] [CrossRef] [PubMed] - Breuer, H.-P.; Laine, E.-M.; Piilo, J.; Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys.
**2016**, 88, 021002. [Google Scholar] [CrossRef] [Green Version] - de Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys.
**2017**, 89, 015001. [Google Scholar] [CrossRef] [Green Version] - Ford, G.W.; O’Connell, R.F. Derivative of the hyperbolic cotangent. Nature
**1996**, 380, 113. [Google Scholar] [CrossRef] - Kim, I. Comment on “note on the derivative of the hyperbolic cotangent”. arXiv
**2007**, arXiv:0705.1512. [Google Scholar] - Estrada, R.; Fulling, S.A. How singular functions define distributions. J. Phys. A Math. Gen.
**2002**, 35, 3079. [Google Scholar] [CrossRef] - Matsubara, T. A New Approach to Quantum-Statistical Mechanics. Prog. Theor. Phys.
**1955**, 14, 351. [Google Scholar] [CrossRef] [Green Version] - Reiche, D.; Busch, K.; Intravaia, F. Quantum thermodynamics of overdamped modes in local and spatially dispersive materials. Phys. Rev. A
**2020**, 101, 012506. [Google Scholar] [CrossRef] [Green Version] - Wolfram Research, Inc. Mathematica; Version 13.0.0; Scientific Software: Champaign, IL, USA, 2021. [Google Scholar]
- Subaşı, Y.; Fleming, C.H.; Taylor, J.M.; Hu, B.L. Equilibrium states of open quantum systems in the strong coupling regime. Phys. Rev. E
**2012**, 86, 061132. [Google Scholar]

**Figure 1.**(

**top**) Phase space entropy for positive Wigner functions (Equation (22), normalized to the minimal uncertainty $log[\pi e]$) as a function of time (measured in multiples of the dissipation rate). We employ the bath spectral density of Equation (A48) and use parameters ${\omega}_{0}/{\gamma}_{0}=10$, $\mathsf{\Lambda}/{\omega}_{0}=10$, and dimensions where $\hslash =1$ as well as choose ${\underline{\sigma}}_{0}=\mathrm{diag}[1/2,1/2]$ for the initial conditions. The lower dashed line gives the lower bound prescribed by the fluctuation–dissipation inequality (FDI) at late times (Equations (12), (13) and (22)), which can be connected to quantum fluctuations in the coupled system+bath system. The upper dashed line gives the exact late time limit of the Gaussian evolution (Equations (22) and (A12)), which also includes thermal fluctuations (see Section 4.1). (

**bottom**) Late-time quantum uncertainty [Equations (9) and (A13)] as a function of $\hslash \beta {\omega}_{0}$, i.e., a measure of the respective impact of quantum or thermal fluctuations. For finite system–bath coupling (black, solid line; ${\omega}_{0}/{\gamma}_{0}=1$), the uncertainty always exceeds the minimal bound of $1/4$ given by the Robertson–Schrödinger equation and saturates the fluctuation–dissipation inequality for $\hslash \beta {\omega}_{0}\gg 1$ (gray, horizontal, dashed line). This discrepancy fades for smaller coupling (gray, solid line; ${\omega}_{0}/{\gamma}_{0}=100$). Additionally, for $\hslash \beta {\omega}_{0}\ll 1$, thermal fluctuations start to prevail over the quantum fluctuations, and the more accurate bound (comparing to the FDI) can be provided by the thermal fluctuation–dissipation inequality (TFDI; gray, dashed, nonhorizontal line; see Section 4.1).

**Figure 2.**Numerical evaluation of the symmetric fluctuations ${\langle \dot{\widehat{\mathcal{Q}}}(t)\dot{\widehat{\mathcal{Q}}}({t}^{\prime})\rangle}_{\mathrm{s}}$ of the system’s momentum operator solely connected to the fluctuating dynamics (see Equation (15)) as a function of time in multiples of the dissipation rate ${\gamma}_{0}$. We employ the $\mathsf{\Lambda}$-model in Equation (A48) for the bath spectral density and use parameters ${\omega}_{0}/{\gamma}_{0}=10$, $\mathsf{\Lambda}/{\omega}_{0}=10$, and $\hslash \beta {\omega}_{0}=2$ and work in dimensionless units where $\hslash =1$. (

**top**) Two-time correlation centered at the dissipation time ${\gamma}_{0}^{-1}$ and normalized to its equal-time correlation at $t={\gamma}_{0}^{-1}$. At $t={\gamma}_{0}^{-1}$, the apparent kink is owed to the numerical resolution in time. The curve is smooth. (

**bottom**) Equal-time correlation normalized to its late-time limit (solid). Lower bound prescribed by thermal fluctuation–dissipation inequality (dashed). The difference between the two is given by $\Delta (t)$ (Equation (28)).

**Figure 3.**Outgoing power connected to the fluctuating dynamics of the system ${P}_{\mathrm{out}}^{\mathrm{fluc}}$ (Equations (17) and (31)) as a function of time in multiples of the dissipation rate ${\gamma}_{0}^{-1}$. Parameters are chosen as in Figure 2. We normalize to the expression for the ingoing power at late times ${P}_{\mathrm{in}}(\infty )$ [Equation (14a)] in order to indicate the balancing of the two at equilibrium (solid line). We further report the corresponding expression using the thermal fluctuation–dissipation inequality, i.e., replacing $\nu \to (2/\beta )\gamma $ in the numerical evaluation, which is always smaller than the full expression (dashed). Lastly, we give the upper estimate of Equation (42) (dotted).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Reiche, D.; Hsiang, J.-T.; Hu, B.-L.
Quantum Thermodynamic Uncertainty Relations, Generalized Current Fluctuations and Nonequilibrium Fluctuation–Dissipation Inequalities. *Entropy* **2022**, *24*, 1016.
https://doi.org/10.3390/e24081016

**AMA Style**

Reiche D, Hsiang J-T, Hu B-L.
Quantum Thermodynamic Uncertainty Relations, Generalized Current Fluctuations and Nonequilibrium Fluctuation–Dissipation Inequalities. *Entropy*. 2022; 24(8):1016.
https://doi.org/10.3390/e24081016

**Chicago/Turabian Style**

Reiche, Daniel, Jen-Tsung Hsiang, and Bei-Lok Hu.
2022. "Quantum Thermodynamic Uncertainty Relations, Generalized Current Fluctuations and Nonequilibrium Fluctuation–Dissipation Inequalities" *Entropy* 24, no. 8: 1016.
https://doi.org/10.3390/e24081016