Conserved Control Path in Multilayer Networks
Abstract
1. Introduction
2. Materials and Methods
2.1. Control Path Based on Structural Controllability
2.2. Conserved Control Path
2.3. Conserved Control Path Detection Method
Algorithm 1. CoPath |
(1) Input: A directed multilayer network . |
(2) Loop: For each layer l ; 1: Classify El into (, , ); 2: Assign weight in ; 3: Construct a bipartite network ; 4: = maximum-cardinality matching with maximum weight (); 5: ← add to . |
(3) Output: |
3. Results
3.1. Conserved Control Path Pattern in Synthetic Networks
3.2. Application in Pan-Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruths, J.; Ruths, D. Control Profiles of Complex Networks. Science 2014, 343, 1373–1376. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; He, Y.; Wang, L.; Chen, G. Predicting Network Controllability Robustness: A Convolutional Neural Network Approach. IEEE Trans. Cybern. 2020, 52, 4052–4063. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of Complex Networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.G.; Ma, X. Dominating Communities for Hierarchical Control of Complex Networks. Inf. Sci. 2017, 414, 247–259. [Google Scholar] [CrossRef]
- Baggio, G.; Bassett, D.S.; Pasqualetti, F. Data-Driven Control of Complex Networks. Nat. Commun. 2021, 12, 1429. [Google Scholar] [CrossRef]
- Zañudo, J.G.T.; Yang, G.; Albert, R.; Levine, H. Structure-Based Control of Complex Networks with Nonlinear Dynamics. Proc. Natl. Acad. Sci. USA 2017, 114, 7234–7239. [Google Scholar] [CrossRef]
- Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C.I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M. The Structure and Dynamics of Multilayer Networks. Phys. Rep. 2014, 544, 1–122. [Google Scholar] [CrossRef]
- Danziger, M.M.; Barabási, A.-L. Recovery Coupling in Multilayer Networks. Nat. Commun. 2022, 13, 955. [Google Scholar] [CrossRef]
- Danziger, M.; Bonamassa, I.; Boccaletti, S.; Havlin, S. Dynamic Interdependence and Competition in Multilayer Networks. Nat. Phys. 2019, 15, 178–185. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, D.; Zou, X. Control of Multilayer Biological Networks and Applied to Target Identification of Complex Diseases. BMC Bioinform. 2019, 20, 271. [Google Scholar] [CrossRef]
- Guo, W.-F.; Zhang, S.-W.; Feng, Y.-H.; Liang, J.; Zeng, T.; Chen, L. Network Controllability-Based Algorithm to Target Personalized Driver Genes for Discovering Combinatorial Drugs of Individual Patients. Nucleic Acids Res. 2021, 49, e37. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhang, C.; Ma, M.; Gong, Q.; Yu, L.; Guo, X.; Gao, L.; Wang, B. Inferring Essential Proteins from Centrality in Interconnected Multilayer Networks. Phys. A Stat. Mech. Its Appl. 2020, 557, 124853. [Google Scholar] [CrossRef]
- Liu, X.; Maiorino, E.; Halu, A.; Glass, K.; Prasad, R.B.; Loscalzo, J.; Gao, J.; Sharma, A. Robustness and Lethality in Multilayer Biological Molecular Networks. Nat. Commun. 2020, 11, 6043. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.R.; Jia, C.X.; Lai, Y.C. Remote Control of Cascading Dynamics on Complex Multilayer Networks. New J. Phys. 2019, 21, 045002. [Google Scholar] [CrossRef]
- Wang, D.; Zou, X. Control Energy and Controllability of Multilayer Networks. Adv. Complex Syst. 2017, 20, 1750008. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, C.; Wang, W.X.; Di, Z.; Lai, Y.C. Exact Controllability of Multiplex Networks. New J. Phys. 2014, 16, 103036. [Google Scholar] [CrossRef]
- Nacher, J.C.; Ishitsuka, M.; Miyazaki, S.; Akutsu, T. Finding and Analysing the Minimum Set of Driver Nodes Required to Control Multilayer Networks. Sci. Rep. 2019, 9, 576. [Google Scholar] [CrossRef]
- Lin, C.-T. Structural Controllablity. IEEE Trans. Autom. Control 1974, 19, 201–208. [Google Scholar]
- Vinayagam, A.; Gibson, T.E.; Lee, H.J.; Yilmazel, B.; Roesel, C.; Hu, Y.; Kwon, Y.; Sharma, A.; Liu, Y.Y.; Perrimon, N.; et al. Controllability Analysis of the Directed Human Protein Interaction Network Identifies Disease Genes and Drug Targets. Proc. Natl. Acad. Sci. USA 2016, 113, 4976–4981. [Google Scholar] [CrossRef]
- Li, M.; Gao, H.; Wang, J.; Wu, F.X. Control Principles for Complex Biological Networks. Brief. Bioinform. 2019, 20, 2253–2266. [Google Scholar] [CrossRef]
- Kalman, R.E. Mathematical Description of Linear Dynamical Systems. J. Soc. Ind. Appl. Math. Ser. A Control 1963, 1, 152–192. [Google Scholar] [CrossRef]
- Wang, B.; Gao, L.; Gao, Y.; Deng, Y.; Wang, Y. Controllability and Observability Analysis for Vertex Domination Centrality in Directed Networks. Sci. Rep. 2014, 4, 5399. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gao, L.; Zhang, Q.; Li, A.; Deng, Y.; Guo, X. Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network. PLoS ONE 2015, 10, e0135491. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zdeborová, L.; Mézard, M. The Number of Matchings in Random Graphs. J. Stat. Mech. Theory Exp. 2006, 2006, P05003. [Google Scholar] [CrossRef][Green Version]
- Liu, Y.; Liu, G. Number of Maximum Matchings of Bipartite Graphs with Positive Surplus. Discret. Math. 2004, 274, 311–318. [Google Scholar] [CrossRef]
- Jia, T.; Barabási, A.L. Control Capacity and a Random Sampling Method in Exploring Controllability of Complex Networks. Sci. Rep. 2013, 3, srep02354. [Google Scholar] [CrossRef]
- Régin, J.C. A Filtering Algorithm for Constraints of Difference in CSPs. Proc. Natl. Conf. Artif. Intell. 1994, 3011, 65–79. [Google Scholar]
- Galil, Z. Efficient Algorithms for Finding Maximum Matching in Graphs. ACM Comput. Surv. 1986, 18, 23–38. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef]
- Erdös, P.; Rėnyi, A. On Random Graphs. Publ. Math. 1959, 6, 290–297. [Google Scholar]
- Network, T.C.G.A. Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in the Cancer Genome Atlas. Cell 2018, 173, 321–337.e10. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Barrera, L.O.; Zheng, M.; Qu, C.; Singer, M.A.; Richmond, T.A.; Wu, Y.; Green, R.D.; Ren, B. A High-Resolution Map of Active Promoters in the Human Genome. Nature 2005, 436, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V. Links between Metabolism and Cancer. Genes Dev. 2012, 26, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT Factors and Metabolic Pathways in Cancer. Front. Oncol. 2020, 10, 499. [Google Scholar] [CrossRef]
- Li, J.; Gong, B.; Chen, X.; Liu, T.; Wu, C.; Zhang, F.; Li, C.; Li, X.; Rao, S.; Li, X. DOSim: An R Package for Similarity between Diseases Based on Disease Ontology. BMC Bioinform. 2011, 12, 266. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Chen, Z.; Xu, D.; Wang, Y. A Network-Based Pathway-Extending Approach Using DNA Methylation and Gene Expression Data to Identify Altered Pathways. Sci. Rep. 2019, 9, 11853. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wang, B.; Hu, J.; Wang, Y.; Zhang, C.; Zhou, Y.; Yu, L.; Guo, X.; Gao, L.; Chen, Y. C3: Connect Separate Connected Components to Form a Succinct Disease Module. BMC Bioinform. 2020, 21, 433. [Google Scholar] [CrossRef]
- Ghiassian, S.D.; Menche, J.; Barabási, A.L. A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome. PLoS Comput. Biol. 2015, 11, e1004120. [Google Scholar] [CrossRef]
- Gómez-Gardeñes, J.; Moreno, Y. From scale-free to Erdos-Rényi networks. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2006, 73, 056124. [Google Scholar] [CrossRef] [PubMed]
- Random—Python 3.6 Documentation. In Press. Available online: https://docs.python.org/3.6/library/random.html (accessed on 18 December 2019).
- Cerami, E.G.; Gross, B.E.; Demir, E.; Rodchenkov, I.; Babur, Ö.; Anwar, N.; Schultz, N.; Bader, G.D.; Sander, C. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011, 39, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Wspolczesna Onkol. 2015, 1A, A68–A77. [Google Scholar] [CrossRef]
- Leek, J.T.; Monsen, E.; Dabney, A.R.; Storey, J.D. EDGE: Extraction and analysis of differential gene expression. Bioinformatics 2006, 22, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Stuart, J.M.; Segal, E.; Koller, D.; Kim, S.K. A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules. Science 2003, 302, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Dean, A.K.; Zhang, W. A general co-expression network-based approach to gene expression analysis: Comparison and applications. BMC Syst. Biol. 2010, 4, 8. [Google Scholar] [CrossRef]
- Liu, Z.P.; Wang, Y.; Zhang, X.S.; Xia, W.; Chen, L. Detecting and analyzing differentially activated pathways in brain regions of Alzheimer’s disease patients. Mol. Biosyst. 2011, 7, 1441–1452. [Google Scholar] [CrossRef]
- Mosteller, F.; Fisher, R.A. Questions and Answers. Am. Stat. 1948, 2, 30–31. [Google Scholar] [CrossRef]
- Kamburov, A.; Stelzl, U.; Lehrach, H.; Herwig, R. The ConsensusPathDB interaction database: 2013 Update. Nucleic Acids Res. 2013, 41, D793–D800. [Google Scholar] [CrossRef]
- Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data 2017, 4, 170029. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Kovács, I.A.; Barabási, A.L. Network-based prediction of drug combinations. Nat. Commun. 2019, 10, 1197. [Google Scholar] [CrossRef] [PubMed]
- Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun. 2016, 7, 10331. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | # Nodes | # Critical Edges | # Redundant Edges | # Ordinary Edges/Nodes |
---|---|---|---|---|
BLCA | 5001 | 333 | 12,190 | 32,467/4704 |
BRCA | 5700 | 255 | 19,731 | 53,541/5481 |
COAD | 5528 | 264 | 17,337 | 46,915/5307 |
ESCA | 4295 | 437 | 7480 | 16,603/3830 |
HNSC | 5431 | 262 | 16,115 | 43,560/5209 |
KICH | 5368 | 326 | 14,996 | 39,849/5091 |
KIRC | 5724 | 254 | 17,571 | 54,308/5520 |
KIRP | 5440 | 287 | 16,017 | 43,072/5190 |
LIHC | 5354 | 250 | 14,702 | 41,302/5153 |
LUAD | 5710 | 262 | 18,377 | 49,641/5488 |
LUSC | 5744 | 263 | 18,964 | 51,889/5521 |
PRAD | 5559 | 273 | 16,038 | 50,544/5330 |
READ | 4982 | 363 | 11,952 | 30,957/4632 |
STAD | 5407 | 335 | 13,585 | 39,380/5095 |
THCA | 5561 | 280 | 17,389 | 46,640/5327 |
UCEC | 5538 | 257 | 17,202 | 46,959/5323 |
Functional Gene Set | # Genes | Source |
---|---|---|
CGC cancer | 572 | https://cancer.sanger.ac.uk/cosmic/ (accessed on 16 July 2018) |
GWAS disease | 19,110 | http://www.ebi.ac.uk/gwas/ (accessed on 2 January 2018) |
OMIM disease | 9915 | https://omim.org/ (accessed on 8 February 2018) |
Virus host | 947 | http://interactome.dfci.harvard.edu/V_hostome (accessed on 1 January 2018) |
Promoter | 6222 | Kim, T. H. et al. 2005 [33] |
Essential | 8253 | http://tubic.tju.edu.cn/deg/ (accessed on 6 December 2017) |
Kinase | 516 | http://kinase.com/human/kinome (accessed on 31 December 2017) |
Drug target | 2994 | http://www.dgidb.org/ (accessed on 8 January 2018) |
Oncogene | 119 | https://www.oncokb.org/ (accessed on 8 July 2019) |
BLCA | BRCA | ||
---|---|---|---|
Names of Enriched Pathway | # CCPs | Names of Enriched Pathway | # CCPs |
Metabolism | 23 | Metabolism | 33 |
Metabolism of lipids | 14 | Metabolism of lipids | 19 |
Phosphatidylinositol signaling system | 11 | Phosphatidylinositol signaling system | 9 |
Inositol phosphate metabolism | 9 | T cell receptor signaling pathway | 10 |
Phospholipid metabolism | 9 | Inositol phosphate metabolism | 9 |
Human T-cell leukemia virus 1 infection | 9 | Human T-cell leukemia virus 1 infection | 9 |
Glycerophospholipid metabolism | 8 | Ras signaling pathway | 9 |
T cell receptor signaling pathway | 8 | PI3K-Akt signaling pathway | 9 |
PI3K-Akt signaling pathway | 7 | VEGFA-VEGFR2 signaling pathway | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Ma, X.; Wang, C.; Zhang, M.; Gong, Q.; Gao, L. Conserved Control Path in Multilayer Networks. Entropy 2022, 24, 979. https://doi.org/10.3390/e24070979
Wang B, Ma X, Wang C, Zhang M, Gong Q, Gao L. Conserved Control Path in Multilayer Networks. Entropy. 2022; 24(7):979. https://doi.org/10.3390/e24070979
Chicago/Turabian StyleWang, Bingbo, Xiujuan Ma, Cunchi Wang, Mingjie Zhang, Qianhua Gong, and Lin Gao. 2022. "Conserved Control Path in Multilayer Networks" Entropy 24, no. 7: 979. https://doi.org/10.3390/e24070979
APA StyleWang, B., Ma, X., Wang, C., Zhang, M., Gong, Q., & Gao, L. (2022). Conserved Control Path in Multilayer Networks. Entropy, 24(7), 979. https://doi.org/10.3390/e24070979