Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems
Abstract
:1. Introduction
2. Quantum Chaos and Random-Matrix Theory
3. Ensemble of Random Matrices
4. Time Evolution of Average Occupation Probabilities
5. Markov Approximation
6. Corrections to the Markov Approximation
7. Oscillatory Terms
8. Summary and Conclusions
Funding
Conflicts of Interest
References
- Haake, F. Quantum Signatures of Chaos; Springer: Berlin, Germany, 2000. [Google Scholar]
- Guhr, T.; Müller-Groeling, A.; Weidenmüller, H.A. Random-Matrix Theories in Quantum Physics: Common Concepts. Phys. Rep. 1998, 299, 189. [Google Scholar] [CrossRef] [Green Version]
- Agassi, D.; Weidenmüller, H.A.; Mantzouranis, G. The Statistical Theory of Nuclear Reactions for Strongly Overlapping Resonances as a Theory of Transport Phenomena. Phys. Rep. 1977, 22, 145. [Google Scholar] [CrossRef]
- Weidenmüller, H.A. Transport Equations for Driven Many-Body Quantum Systems. J. Phys. A Math. Theor. 2022, 55, 184001. [Google Scholar] [CrossRef]
- Eisert, J.; Friesdorf, M.; Gogolin, C. Quantum Many-Body Systems out of Equilibrium. Nat. Phys. 2015, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Gogolin, C.; Eisert, J. Equilibration, Thermalization, and the Emergence of Statistical Mechanics in Closed Quantum Systems. Rep. Prog. Phys. 2016, 79, 056001. [Google Scholar] [CrossRef] [Green Version]
- Wigner, E.P. Characteristic Vectors of Bordered Matrices with Infinite Dimensions. Ann. Math. 1955, 62, 548. [Google Scholar] [CrossRef]
- Wigner, E.P.; Eisenbud, L. Higher Angular Momenta and Long Range Interaction in Resonance Reactions. Phys. Rev. 1947, 72, 29. [Google Scholar] [CrossRef]
- McDonald, S.W.; Kaufman, A.N. Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories. Phys. Rev. Lett. 1979, 42, 1189. [Google Scholar] [CrossRef] [Green Version]
- Casati, G.; Valz-Gris, F.; Guarneri, I. On the Connection between Quantization of Nonintegrable Systems and Statistical Theory of Spectra. Lett. Nuovo C. Soc. Ital. Fis. 1980, 28, 279. [Google Scholar] [CrossRef]
- Berry, M.V. Quantizing a Classicallz Ergodic System: Sinai’s Billiard and the KKR Method. Ann. Phys. 1981, 131, 163. [Google Scholar] [CrossRef]
- Dyson, F.J. Statistical Theory of the Energy Levels of Complex Systems. I. J. Math. Phys. 1962, 3, 140. [Google Scholar] [CrossRef]
- Bohigas, O.; Giannoni, M.-J.; Schmit, C. Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws. Phys. Rev. Lett. 1984, 52, 1. [Google Scholar] [CrossRef]
- Sieber, M.; Richter, K. Correlations between Periodic Orbits and their Role in Spectral Statistics. Phys. Scr. 2001, T 90, 128. [Google Scholar] [CrossRef]
- Heusler, S.; Müller, S.; Altland, A.; Braun, P.; Haake, F. Periodic-Orbit Theory of Level Correlations. Phys. Rev. Lett. 2007, 98, 044103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, S.; Sieber, M. Quantum Chaos and Quantum Graphs. In The Oxford Handbook of Random Matrix Theory; Akemann, G., Baik, J., Francesco, P.D., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 683–702. [Google Scholar]
- Eckmann, J.-P.; Ruelle, D. Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 1985, 57, 617. [Google Scholar] [CrossRef]
- Rammensee, J.; Urbina, J.D.; Richter, K. Many-Body Quantum Interference and the Saturation of Out-of-Time-Order Correlators. Phys. Rev. Lett. 2018, 121, 124101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiger, B.; Urbina, J.D.; Richter, K. Emergence of a Renormalized 1/N Expansion in Quenched Critical Many-Body Systems. Phys. Rev. Lett. 2021, 126, 110602. [Google Scholar] [CrossRef]
- Kos, P.; Ljubotina, M.; Prosen, T. Many-Body Quantum Chaos: Analytic Connection to Random-Matrix Theory. Phys. Rev. X 2018, 8, 021062. [Google Scholar] [CrossRef] [Green Version]
- Zelevinsky, V.; Brown, B.A.; Frazier, N.; Horoi, M. The Nuclear Shell-Model as a Testing Ground for Many-Body Chaos. Phys. Rep. 1996, 276, 85. [Google Scholar] [CrossRef]
- Borgonovi, F.; Izrailev, F.M.; Santos, L.F.; Zelevinsky, V.G. Quantum Chaos and Thermalization in Isolated Systems of Interacting Particles. Phys. Rep. 2016, 626, 1. [Google Scholar] [CrossRef] [Green Version]
- Evers, F.; Mirlin, A.D. Anderson Transitions. Rev. Mod. Phys. 2008, 80, 1355. [Google Scholar] [CrossRef] [Green Version]
- Alet, F.; Laflorencie, N. Many-Body Localization: An Introduction and Selected Topics. C. R. Phys. 2018, 19, 498. [Google Scholar] [CrossRef]
- Abanin, D.A.; Altmann, E.; Bloch, I.; Serbyn, M. Many-Body Localization, Thermalization, and Entanglement. Rev. Mod. Phys. 2019, 91, 021001. [Google Scholar] [CrossRef] [Green Version]
- Palffy, A.; Buss, O.; Hoefer, A.; Weidenmüller, H.A. Laser-Nucleus Interactions: The Quasiadiabatic Regime. Phys. Rev. C 2015, 92, 044619. [Google Scholar] [CrossRef] [Green Version]
- Volya, A.; Zelevinsky, V. Time-dependent relaxation of observables in complex quantum systems. Phys. Complex. 2020, 1, 025007. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weidenmüller, H.A. Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems. Entropy 2022, 24, 959. https://doi.org/10.3390/e24070959
Weidenmüller HA. Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems. Entropy. 2022; 24(7):959. https://doi.org/10.3390/e24070959
Chicago/Turabian StyleWeidenmüller, Hans A. 2022. "Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems" Entropy 24, no. 7: 959. https://doi.org/10.3390/e24070959
APA StyleWeidenmüller, H. A. (2022). Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems. Entropy, 24(7), 959. https://doi.org/10.3390/e24070959