# Plasma-like Description for Elementary and Composite Quantum Particles

## Abstract

**:**

## 1. Introduction

- How can a continuous charge density distribution be approximated by a discrete one with a quantized charge?
- What mathematical model (equations of motion) can underlie such a description?
- How can the description be extended to composite particles?
- What are some implications of the obvious analogy with plasma?

## 2. Methods and Results

#### 2.1. Approximation of a Continuous Charge Density Distribution by a Discrete One with a Quantized Charge

#### 2.2. An Example Mathematical Model

#### 2.3. Extension to Composite Particles

#### 2.4. The Plasma Analogy

## 3. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

Electron Coordinates | Positron Coordinates |

−3.1126741447007592777837555796944 | 2.9530344365605025711769473845442 |

−2.8775683647214638678316386267493 | −3.0951381769952591512118001250174 |

−2.6434375832598523581831400447478 | −2.8614098696120820985572576736353 |

−1.9336327385447378036758712466442 | −2.1882892356297157247876068745650 |

−1.6936070421273554090248068336325 | −2.6326516523345556425794778026752 |

−2.1719682464297679903185420586677 | −1.9710273543645197236521756279888 |

−1.4519956803651471460404417607211 | −1.7555235230550466106754786539860 |

−1.2088029171600329445514113518049 | −1.5403236844404032536985003739319 |

−0.96395311532928105718506480243987 | −1.1039117628153018022432733933447 |

−0.71762228955760307445232301075533 | −1.3237515410575950384914085327471 |

−0.47125651467198634491476595790667 | −0.87873421856160715534322966231588 |

−0.22858211104030609796912348102868 | −0.64632138885302414208246702251485 |

0.86186952364267439824952086701953 | 0.33294945631962504080286722164668 |

0.00616783249506095738298247885632 | −0.40611981918357315216289810648891 |

0.23137130395092737580909635004611 | −0.16042959567225122871033380542859 |

0.44789490782808160879397312969880 | 0.08676186721721802846687332761214 |

0.65746934747098210872577876522952 | 0.57756516301030844804631542526482 |

1.2615668189213491342215825540197 | 0.82076073717919350910333838443007 |

1.4597980397241581466451663147530 | 1.3035691589932125510920278727478 |

2.0643955075009215796102922944881 | 2.0187559332910846063814218989366 |

1.6587989484672624969753714473643 | 1.7817077278249609050042692119912 |

1.8599046587703446165936780433590 | 1.5432590795101890022517254564541 |

2.2734402898434140647729061709433 | 2.2542171585208840682836715659146 |

2.7088031793185310430667064345281 | 2.7204794077160776393522523646147 |

2.9363544347316877716974068736781 |

## References

- Schlosshauer, M.; Kofler, J.; Zeilinger, A. A snapshot of foundational attitudes toward quantum mechanics. Stud. Hist. Philos. Mod. Phys.
**2013**, 44, 222. [Google Scholar] [CrossRef] [Green Version] - Sommer, C. Another survey of foundational attitudes towards quantum mechanics. arXiv
**2013**, arXiv:1303.2719. [Google Scholar] - Norsen, T.; Nelson, S. Yet another snapshot of foundational attitudes toward quantum mechanics. arXiv
**2013**, arXiv:1306.4646. [Google Scholar] - Sivasundaram, S.; Nielsen, K.H. Surveying the attitudes of physicists concerning foundational issues of quantum mechanics. arXiv
**2016**, arXiv:1612.00676. [Google Scholar] - Craver, C.; Tabery, J. Available online: https://plato.stanford.edu/entries/science-mechanisms/ (accessed on 28 November 2021).
- Sanz, A.S. Bohm’s approach to quantum mechanics: Alternative theory or practical picture? Front. Phys.
**2019**, 14, 11301. [Google Scholar] [CrossRef] [Green Version] - Schrödinger, E. Dirac’s New Electrodynamics. Nature
**1952**, 169, 538. [Google Scholar] [CrossRef] - Akhmeteli, A. One real function instead of the Dirac spinor function. J. Math. Phys.
**2011**, 52, 082303. [Google Scholar] [CrossRef] [Green Version] - Akhmeteli, A. The Dirac Equation as One Fourth-Order Equation for One Function: A General, Manifestly Covariant Form. arXiv
**2015**, arXiv:1502.02351. [Google Scholar] - Akhmeteli, A. The Dirac Equation as One Fourth-Order Equation for One Function: A General, Manifestly Covariant Form. In Quantum Foundations, Probability and Information; Khrennikov, A., Bourama, T., Eds.; Springer: Cham, Switzerland, 2018; p. 1. [Google Scholar]
- Bagrov, V.G.; Gitman, D. The Dirac Equation and its Solutions; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2014. [Google Scholar]
- Bagrov, V.G. Squaring the Dirac Equations. Russ. Phys. J.
**2018**, 61, 403. [Google Scholar] [CrossRef] - Akhmeteli, A. The Dirac equation in a Yang-Mills field as an equation for just one real function. arXiv
**2018**, arXiv:1811.02441. [Google Scholar] - Akhmeteli, A.M. Real-Valued Charged Fields and Interpretation of Quantum Mechanics. arXiv
**2005**, arXiv:quant-ph/0509044. [Google Scholar] - Akhmeteli, A. No drama quantum electrodynamics? Eur. Phys. J. C
**2013**, 73, 2371. [Google Scholar] [CrossRef] [Green Version] - Khrennikov, A. Is the Devil in h? Entropy
**2021**, 23, 632. [Google Scholar] [CrossRef] [PubMed] - Colin, S.; Durt, T.; Willox, R. de Broglie’s double solution program: 90 years later. Ann. Fond. Louis Broglie
**2017**, 42, 19. [Google Scholar] - Vigier, J.P. Evidence For Nonzero Mass Photons Associated with a Vacuum-Induced Dissipative Red-Shift Mechanism. IEEE Trans. Plasma Sci.
**1990**, 18, 64. [Google Scholar] [CrossRef] - Braun-Munzinger, P.; Stachel, J. The quest for the quark-gluon plasma. Nature
**2007**, 448, 302. [Google Scholar] [CrossRef] [PubMed] - Schlosshauer, M. Experimental motivation and empirical consistency in minimal no-collapse quantum mechanics. Ann. Phys.
**2006**, 321, 112. [Google Scholar] [CrossRef] [Green Version] - Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Understanding quantum measurement from the solution of dynamical models. Phys. Rep.
**2013**, 525, 1. [Google Scholar] [CrossRef] [Green Version] - Strassler, M. Available online: https://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-structure-of-matter/protons-and-neutrons/ (accessed on 29 November 2021).
- Bohm, D.; Hiley, B.J.; Kaloyerou, P.N. An ontological basis for the quantum theory. Phys. Rep.
**1987**, 144, 321. [Google Scholar] [CrossRef] - Vedral, V. A Classical (Local) Account of The Aharonov-Bohm Effect. arXiv
**2021**, arXiv:2111.00476. [Google Scholar] - Akhmeteli, A. Is no drama quantum theory possible? Int. J. Quantum Inf.
**2011**, 9, 17–26. [Google Scholar] [CrossRef] [Green Version] - Kowalski, K.; Steeb, W.H. Nonlinear Dynamical Systems and Carleman Linearization; World Scientific: Singapore, 1991. [Google Scholar]
- Kowalski, K. Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems; World Scientific: Singapore, 1994. [Google Scholar]
- Georgi, H. Effective Field Theory. Annu. Rev. Nucl. Part. Sci.
**1993**, 43, 209. [Google Scholar] [CrossRef] - Verschelde, J. Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems byHomotopy Continuation. ACM Trans. Math. Softw.
**1999**, 25, 251. [Google Scholar] [CrossRef] - Leykin, A. Available online: https://antonleykin.math.gatech.edu/math4803spr13/BOOK/chapter2.pdf (accessed on 29 November 2021).
- Verschelde, J. Available online: http://homepages.math.uic.edu/~jan/download.html (accessed on 29 November 2021).
- Lee, H.W. Theory and application of the quantum phase-space distribution functions. Phys. Rep.
**1995**, 259, 147. [Google Scholar] [CrossRef] - Sebens, C.T. Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations. Found. Phys.
**2021**, 51, 75. [Google Scholar] [CrossRef] - Barut, A.O. Combining Relativity and Quantum Mechanics: Schrödinger’s Interpretation of ψ. Found. Phys.
**1988**, 18, 95–105. [Google Scholar] [CrossRef] - Khrennikov, A. Beyond Quantum; Pan Stanford Publishing: Singapore, 2014. [Google Scholar]
- Nikolić, H. Bohmian Particle Trajectories in Relativistic Bosonic Quantum Field Theory. Found. Phys. Lett.
**2004**, 17, 363. [Google Scholar] [CrossRef] [Green Version] - Horton, G.; Dewdney, C.; Nesteruk, A. Time-like flows of energy momentum and particle trajectories for the Klein-Gordon equation. J. Phys.
**2000**, A33, 7337. [Google Scholar] [CrossRef] [Green Version] - Tumulka, R. Response to Horton and Dewdney. arXiv
**2002**, arXiv:quant-ph/0210018. [Google Scholar] - Holland, P.R. The Quantum Theory of Motion; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Zeilinger, A.; Gähler, R.; Shull, C.G.; Treimer, W.; Mampe, W. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys.
**1988**, 60, 1067. [Google Scholar] [CrossRef] - Fein, Y.Y.; Geyer, P.; Zwick, P.; Kiałka, F.; Pedalino, S.; Mayor, M.; Gerlich, S.; Arndt, M. Quantum superposition of molecules beyond 25 kDa. Nat. Phys.
**2019**, 15, 1242. [Google Scholar] [CrossRef] - Duane, W. The Transfer in Quanta of Radiation Momentum to Matter. Proc. Natl. Acad. Sci. USA
**1923**, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Epstein, P.S.; Ehrenfest, P. The Quantum Theory of the Fraunhofer Diffraction. Proc. Natl. Acad. Sci. USA
**1924**, 10, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Landé, A. Why Do Quantum Theorists Ignore the Quantum Theory? Br. J. Philos. Sci.
**1965**, XV, 307. [Google Scholar] [CrossRef] - Couder, Y.; Fort, E. Single-Particle Diffraction and Interference at a Macroscopic Scale. Phys. Rev. Lett.
**2006**, 97, 154101. [Google Scholar] [CrossRef] [Green Version] - Plyukhin, A.V.; Schofield, J. Stochastic model related to the Klein-Gordon equation. Phys. Rev. E
**2001**, 64, 037101. [Google Scholar] [CrossRef] [Green Version] - Shi, Y.; Fisch, N.J.; Qin, H. Effective-action approach to wave propagation in scalar QED plasmas. Phys. Rev. A
**2016**, 94, 012124. [Google Scholar] [CrossRef] [Green Version] - Stenson, E.V.; Horn-Stanja, J.; Stoneking, M.R.; Pedersen, T.S. Debye length and plasma skin depth: Two length scales of interest in the creation and diagnosis of laboratory pair plasmas. J. Plasma Phys.
**2017**, 83, 595830106. [Google Scholar] [CrossRef] [Green Version] - Dirac, P.A.M. Principles of Quantum Mechanics, 4th ed.; Oxford University Press: Oxford, UK, 1958; p. 263. [Google Scholar]
- Thaller, B. The Dirac Equation; Springer: Berlin/Heidelberg, Germany, 1992; p. 18. [Google Scholar]
- Catillon, P.; Cue, N.; Gaillard, M.; Genre, R.; Gouanère, M.; Kirsch, R.; Poizat, J.C.; Remillieux, J.; Roussel, L.; Spighel, M. A Search for the de Broglie Particle Internal Clock by Means of Electron Channeling. Found. Phys.
**2008**, 38, 659. [Google Scholar] [CrossRef]

**Figure 2.**The smooth charge density distribution to be approximated by a collection of discrete quantized charges.

**Figure 3.**The smooth charge density distribution (green) and the discrete charges of the approximating discrete charge density distribution. The charges are mostly arranged in pairs; the clusters of three charges are encircled by ellipses.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Akhmeteli, A.
Plasma-like Description for Elementary and Composite Quantum Particles. *Entropy* **2022**, *24*, 261.
https://doi.org/10.3390/e24020261

**AMA Style**

Akhmeteli A.
Plasma-like Description for Elementary and Composite Quantum Particles. *Entropy*. 2022; 24(2):261.
https://doi.org/10.3390/e24020261

**Chicago/Turabian Style**

Akhmeteli, Andrey.
2022. "Plasma-like Description for Elementary and Composite Quantum Particles" *Entropy* 24, no. 2: 261.
https://doi.org/10.3390/e24020261