An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem
Abstract
1. Introduction
2. The Basic Concepts of the Residue Arithmetic
3. Reverse Conversion of the Residue Code to Conventional Representation
3.1. CRT-Base Conversion Method
3.2. MRS-Base Conversion Method
4. A Novel CRT-Base RNS-to-MRS Reverse Conversion Method
5. A Numerical Example of the Proposed Conversion Method
6. The Computational Cost of the Reverse Conversion Method
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szabo, N.S.; Tanaka, R.I. Residue Arithmetic and Its Application to Computer Technology; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Molahosseini, A.S.; de Sousa, L.S.; Chang, C.H. (Eds.) Embedded Systems Design with Special Arithmetic and Number Systems; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Akushskii, I.Y.; Juditskii, D.I. Machine Arithmetic in Residue Classes; Soviet Radio: Moscow, Russia, 1968. (In Russian) [Google Scholar]
- Amerbayev, V.M. Theoretical Foundations of Machine Arithmetic; Nauka: Alma-Ata, Kazakhstan, 1976. (In Russian) [Google Scholar]
- Omondi, A.R.; Premkumar, B. Residue Number Systems: Theory and Implementation; Imperial College Press: London, UK, 2007. [Google Scholar]
- Soderstrand, M.A.; Jenkins, W.K.; Jullien, G.A.; Taylor, F.J. (Eds.) Residue Number System Arithmetic: Modern Applications in Digital Signal Processing; IEEE Press: New York, NY, USA, 1986. [Google Scholar]
- Chernyavsky, A.F.; Danilevich, V.V.; Kolyada, A.A.; Selyaninov, M.Y. High-Speed Methods, and Systems of Digital Information Processing; Belarusian State University: Minsk, Belarus, 1996. (In Russian) [Google Scholar]
- Ananda Mohan, P.V. Residue Number Systems. Theory and Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Michaels, A.J. A maximal entropy digital chaotic circuit. In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 717–720. [Google Scholar]
- Ding, C.; Pei, D.; Salomaa, A. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography; World Scientific: Singapore, 1996. [Google Scholar]
- Omondi, A.R. Cryptography Arithmetic: Algorithms and Hardware Architectures; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Burton, D.M. Elementary Number Theory, 7th ed.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 6th ed.; Oxford University Press: London, UK, 2008. [Google Scholar]
- Akkal, M.; Siy, P. A new mixed radix conversion algorithm MRC-II. J. Syst. Archit. 2007, 53, 577–586. [Google Scholar] [CrossRef]
- Chakraborti, N.B.; Soundararajan, J.S.; Reddy, A.L.N. An implementation of mixed-radix conversion for residue number applications. IEEE Trans. Comput. 1986, 35, 762–764. [Google Scholar] [CrossRef]
- Huang, C.H. Fully parallel mixed-radix conversion algorithm for residue number applications. IEEE Trans. Comput. 1983, 32, 398–402. [Google Scholar] [CrossRef]
- Miller, D.F.; McCormick, W.S. An arithmetic free parallel mixed-radix conversion algorithm. IEEE Trans. Circuits Syst. II 1998, 45, 158–162. [Google Scholar] [CrossRef]
- Yassine, H.M.; Moore, W.R. Improved mixed-radix conversion for residue number architectures. IEE Proc. G - Circuits Devices Syst. 1991, 138, 120–124. [Google Scholar] [CrossRef]
- Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1998. [Google Scholar]
- Shoup, V. A Computational Introduction to Number Theory and Algebra, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Phatak, D.S.; Houston, S.D. New distributed algorithms for fast sign detection in residue number systems (RNS). J. Parallel Distrib. Comput. 2016, 97, 78–95. [Google Scholar] [CrossRef]
- Shenoy, M.A.P.; Kumaresan, R. A fast and accurate RNS scaling technique for high speed signal processing. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 929–937. [Google Scholar] [CrossRef]
- Vu, T.V. Efficient implementations of the Chinese Remainder Theorem for sign detection and residue decoding. IEEE Trans. Comput. 1985, 34, 646–651. [Google Scholar]
- Miller, D.D.; Altschul, R.E.; King, J.R.; Polky, J.N. Analysis of the residue class core function of Akushskii, Burcev, and Pak. In Residue Number System Arithmetic: Modern Applications in Digital Signal Processing; IEEE Press: Piscataway, NJ, USA, 1986; pp. 390–401. [Google Scholar]
- Gonnella, J. The application of core functions to residue number system. IEEE Trans. Signal Process. 1991, 39, 69–75. [Google Scholar] [CrossRef]
- Abtahi, M. Core function of an RNS number with no ambiguity. Comput. Math. Appl. 2005, 50, 459–470. [Google Scholar] [CrossRef][Green Version]
- Kong, Y.; Asif, S.; Khan, M.A.U. Modular multiplication using the core function in the residue number system. Appl. Algebra Eng. Commun. Comput. 2016, 27, 1–16. [Google Scholar] [CrossRef]
- Kolyada, A.A.; Selyaninov, M.Y. Generation of integral characteristics of symmetric-range residue codes. Cybern. Syst. Anal. 1986, 22, 431–437. [Google Scholar] [CrossRef]
- Selianinau, M. An efficient implementation of the CRT algorithm based on an interval-index characteristic and minimum-redundancy residue code. Int. J. Comput. Meth. 2020, 17, 2050004. [Google Scholar] [CrossRef]
- Lu, M.; Chiang, J.-S. A novel division algorithm for the residue number system. IEEE Trans. Comput. 1992, 41, 1026–1032. [Google Scholar] [CrossRef]
- Dimauro, G.; Impedovo, S.; Modugno, R.; Pirlo, G.; Stefanelli, R. Residue-to-binary conversion by the “quotient function”. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 2003, 50, 488–493. [Google Scholar] [CrossRef]
- Dimauro, G.; Impedovo, S.; Pirlo, G.; Salzo, A. RNS architectures for the implementation of the ’diagonal function’. Inf. Process. Lett. 2000, 73, 189–198. [Google Scholar] [CrossRef]
- Pirlo, G.; Impedovo, D. A new class of monotone functions of the residue number system. Int. J. Math. Models Meth. Appl. Sci. 2013, 7, 802–809. [Google Scholar]
- Hitz, M.A.; Kaltofen, E. Integer division in residue number systems. IEEE Trans. Comput. 1995, 44, 983–989. [Google Scholar] [CrossRef]
- Bergerman, M.V.; Lyakhov, P.A.; Voznesensky, A.S.; Bogaevskiy, D.V.; Kaplun, D.I. Designing reverse converter for data transmission systems from two-level RNS to BNS. J. Phys. Conf. Ser. 2020, 1658, 012005. [Google Scholar] [CrossRef]
- Daphni, S.; Vijula Grace, K.S. A review analysis of reverse converter based on RNS in signal processing. Int. J. Sci. Technol. Res. 2020, 9, 1686–1689. [Google Scholar]
- Sousa, L.; Paludo, R.; Martins, P.; Pettenghi, H. Towards the integration of reverse converters into the RNS channels. IEEE Trans. Comput. 2020, 69, 342–348. [Google Scholar] [CrossRef]
- Mojahed, M.; Molahosseini, A.S.; Zarandi, A.A.E. A multifunctional unit for reverse conversion and sign detection based on the 5-moduli set. Comp. Sci. 2021, 22, 101–121. [Google Scholar] [CrossRef]
- Salifu, A. New reverse conversion for four-moduli set and five-moduli set. J. Comp. Commun. 2021, 9, 57–66. [Google Scholar] [CrossRef]
- Taghizadeghankalantari, M.; TaghipourEivazi, S. Design of efficient reverse converters for Residue Number System. J. Circuits Syst. Comp. 2021, 30, 2150141. [Google Scholar] [CrossRef]
Input Residue | Number and Skope of LUTs | Output Residue Set |
---|---|---|
, | ||
, | ||
⋯ | ⋯ | ⋯ |
2, | ||
1, |
Modular Channel | Input Data | Output Data |
---|---|---|
, | ||
, | ||
⋯ | ⋯ | ⋯ |
, | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selianinau, M.; Povstenko, Y. An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem. Entropy 2022, 24, 242. https://doi.org/10.3390/e24020242
Selianinau M, Povstenko Y. An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem. Entropy. 2022; 24(2):242. https://doi.org/10.3390/e24020242
Chicago/Turabian StyleSelianinau, Mikhail, and Yuriy Povstenko. 2022. "An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem" Entropy 24, no. 2: 242. https://doi.org/10.3390/e24020242
APA StyleSelianinau, M., & Povstenko, Y. (2022). An Efficient Parallel Reverse Conversion of Residue Code to Mixed-Radix Representation Based on the Chinese Remainder Theorem. Entropy, 24(2), 242. https://doi.org/10.3390/e24020242