Informational Entropy Threshold as a Physical Mechanism for Explaining Tree-like Decision Making in Humans
Abstract
1. Introduction
2. Theoretical Framework
2.1. Entropy Refinement
- If : continue prospecting;
- Else: accept the option i satisfying .
2.2. Working Example
3. Experimental Results
3.1. Overall Performance in the Navigation Task
3.2. Eye-Tracking Data Captured Prospection Dynamics
3.3. Quantifying Prospection during Navigation
3.4. Human Decisions during Maze Navigation Are Compatible with the ERM
3.5. Information Statistics at the Moment of the Decision
4. Conclusions
5. Methods
5.1. Experimental Design
5.2. Payoff Estimation from Experimental Trajectories
5.3. Virtual Walkers with Prospection
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gold, J.I.; Shadlen, M.N. The Neural Basis of Decision Making. Ann. Rev. Neurosci. 2007, 30, 535–574. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.P.; O’Connell, R.G. The neural processes underlying perceptual decision making in humans: Recent progress and future directions. J. Physiol.-Paris 2015, 109, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, S.; Robbins, T.W. Decision-making in the adolescent brain. Nat. Neurosci. 2012, 15, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- De Martino, B.; Kumaran, D.; Seymour, B.; Dolan, R.J. Frames, Biases, and Rational Decision-Making in the Human Brain. Science 2006, 313, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. Game theory and neural basis of social decision making. Nat. Neurosci. 2008, 11, 404–409. [Google Scholar] [CrossRef]
- Lee, D.; Conroy, M.L.; McGreevy, B.P.; Barraclough, D.J. Reinforcement learning and decision making in monkeys during a competitive game. Cogn. Brain Res. 2004, 22, 45–58. [Google Scholar] [CrossRef]
- Couzin, I.; Krause, J.; Franks, N.; Levin, S.A. Effective leadership and decision-making in animal groups on the move. Nature 2005, 433, 513–516. [Google Scholar] [CrossRef]
- Ward, A.J.W.; Sumpter, D.J.T.; Couzin, I.D.; Hart, P.J.B.; Krause, J. Quorum decision-making facilitates information transfer in fish shoals. Proc. Natl. Acad. Sci. USA 2008, 105, 6948–6953. [Google Scholar] [CrossRef]
- Valentini, G.; Ferrante, E.; Dorigo, M. The Best-of-n Problem in Robot Swarms: Formalization, State of the Art, and Novel Perspectives. Front. Robot. 2017, 4, 9. [Google Scholar] [CrossRef]
- Conradt, L.; List, C. Group decisions in humans and animals: A survey. Phil. Trans. R. Soc. B 2009, 364, 719–742. [Google Scholar] [CrossRef]
- Redner, S. Reality-inspired voter models: A mini-review. Comp. Rend. Phys. 2019, 20, 275–292. [Google Scholar] [CrossRef]
- Ortega, P.A.; Braun, D.A. Thermodynamics as a theory of decision-making with information-processing costs. Proc. R. Soc. A 2013, 469, 20120683. [Google Scholar] [CrossRef]
- Yukalov, V.I.; Sornette, D. Self-organization in Complex Systems as Decision Making. Adv. Complex. Syst. 2014, 17, 1450016. [Google Scholar] [CrossRef]
- Schwartenbeck, P.; FitzGerald, T.; Dolan, R.J.; Friston, K. Exploration, novelty, surprise, and free energy minimization. Front. Psychol. 2013, 2013, 710. [Google Scholar] [CrossRef]
- Roldán, É.; Neri, I.; Dörpinghaus, M.; Meyr, H.; Jülicher, F. Decision Making in the Arrow of Time. Phys. Rev. Lett. 2015, 115, 250602. [Google Scholar] [CrossRef]
- Favre, M.; Wittwer, A.; Heinimann, H.R.; Yukalov, V.I.; Sornette, D. Quantum Decision Theory in Simple Risky Choices. PLoS ONE 2016, 11, e0168045. [Google Scholar] [CrossRef]
- Britten, K.H.; Shadlen, M.N.; Newsome, W.T.; Movshon, J.A. The analysis of visual motion: A comparison of neuronal and psychophysical performance. J. Neurosci. 1992, 12, 4745–4765. [Google Scholar] [CrossRef]
- Roitman, J.D.; Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 2002, 22, 9475–9489. [Google Scholar] [CrossRef]
- Tartaglia, E.M.; Clarke1, A.M.; Herzog, M.H. What to Choose Next? A Paradigm for Testing Human Sequential Decision Making. Front. Psychol. 2017, 8, 312. [Google Scholar] [CrossRef]
- Zhang, D.; Gu, R. Behavioral preference in sequential decision-making and its association with anxiety. Hum. Brain Mapp. 2018, 39, 2482–2499. [Google Scholar] [CrossRef]
- Gilbert, D.T.; Wilson, T.D. Prospection: Experiencing the future. Science 2007, 317, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Suddendorf, T.; Corballis, M.C. The evolution of foresight: What is mental time travel, and is it unique to humans? Behav. Brain Sci. 2007, 30, 299. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, B.E.; Foster, D.J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 2013, 497, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; Smith, P.L.; Brown, S.D.; McKoon, G. Diffusion Decision Model: Current Issues and History. Trends Cogn. Sci. 2016, 20, 260–281. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; McKoon, G. The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. Neural Comput. 2008, 20, 873–922. [Google Scholar] [CrossRef]
- Mormann, M.; Malmaud, J.; Huth, A.; Koch, C.; Rangel, A. The Drift Diffusion Model can account for the accuracy andreaction time of value-based choices under high and low timepressure. Judgm. Decis. Mak. 2010, 5, 437–449. [Google Scholar]
- Pedersen, M.L.; Frank, M.J.; Biele, G. The drift diffusion model as the choice rule in reinforcement learning. Psychon. Bull. Rev. 2017, 24, 1234–1251. [Google Scholar] [CrossRef]
- Fontanesi, L.; Gluth, S.; Spektor, M.S. A reinforcement learning diffusion decision model for value-based decisions. Psychon. Bull. Rev. 2019, 26, 1099–1121. [Google Scholar] [CrossRef]
- Roxin, A. Drift–diffusion models for multiple-alternative forced-choice decision making. J. Math. Neurosci. 2019, 9, 5. [Google Scholar] [CrossRef]
- Tajima, S.; Drugowitsch, J.; Pouget, A. Optimal policy for value-based decision-making. Nat. Comm. 2016, 7, 12400. [Google Scholar] [CrossRef]
- Solwaya, A.; Botvinick, M.M. Evidence integration in model-based tree search. Proc. Natl. Acad. Sci. USA 2015, 112, 11708. [Google Scholar] [CrossRef]
- Nguyen, K.P.; Josić, K.; Kilpatrick, Z.P. Optimizing sequential decisions in the drift-diffusion model. J. Math. Psychol. 2019, 88, 32–47. [Google Scholar] [CrossRef]
- Zylberberg, A. Decision prioritization and causal reasoning in decision hierarchies. PLoS Comp. Biol. 2021, 17, e1009688. [Google Scholar] [CrossRef]
- Wald, A.; Wolfowitz, J. Optimum character of the sequential probability ratio test. Ann. Math. Stat. 1948, 19, 326–339. [Google Scholar] [CrossRef]
- Bogacz, R.; Brown, E.; Moehlis, J.; Holmes, P.; Cohen, J.D. The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 2006, 113, 700. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics I. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Collell, G.; Fauquet, J. Brain activity and cognition: A connection from thermodynamics and information theory. Front. Psychol. 2015, 6, 818. [Google Scholar] [CrossRef]
- Friston, K.; Kilner, J.; Harrison, L. A free energy principle for the brain. J. Physiol.-Paris 2006, 100, 70–87. [Google Scholar] [CrossRef]
- Slezak, D.F.; Sigman, M.; Cecchi, G.A. An entropic barriers diffusion theory of decision-making in multiple alternative tasks. PLoS Comput. Biol. 2018, 14, e1005961. [Google Scholar]
- McGill, W.J.; Gibbon, J. The general-gamma distribution and reaction times. J. Math. Psychol. 1965, 2, 1–18. [Google Scholar] [CrossRef]
- Palmer, E.M.; Horowitz, T.S.; Torralba, A.; Wolfe, J.M. What are the shapes of response time distributions in visual search? J. Exp. Psychol. Hum. Percept. Perform. 2011, 37, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.M.; Díaz, J.A.; Norwich, K.H. A theory of power laws in human reaction times: Insights from an information-processing approach. Front. Hum. Neurosci. 2014, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.M.; Díaz, J.A. Commentary: Piéron’s law is not just an artifact of the response mechanism. Front. Physiol. 2015, 6, 190. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Amit, D.J.; Parisi, G.; Peliti, L. Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 1983, 27, 1635–1645. [Google Scholar] [CrossRef]
- Rammal, R.; d’Auriac, J.C.A.; Benott, A. Statistics of the true self-avoiding walk in one dimension. J. Phys. A 1984, 17, 9–14. [Google Scholar] [CrossRef]
- Family, F.; Daoud, M. Experimental realization of true self-avoiding walks. Phys. Rev. B 1984, 29, 1506–1507. [Google Scholar] [CrossRef]
- Tan, Z.-J.; Zou, X.-W.; Zhang, W.; Jin, Z.-Z. “True” self-attracting walk. Phys. Lett. A 2001, 289, 251–254. [Google Scholar] [CrossRef]
- Sapozhnikov, V.B. Self-attracting walk with nu <1/2. J. Phys. A 1994, 27, 151–153. [Google Scholar]
- Ordemann, A.; Tomer, E.; Berkolaiko, G.; Havlin, S.; Bunde, A. Structural properties of self-attracting walks. Phys. Rev. E 2001, 64, 046117. [Google Scholar] [CrossRef]
- Del Prado Martin, F.M. Scale-Invariance of Human Latencies. In Proceedings of the Annual Meeting of the Cognitive Science Society, Amsterdam, The Netherlands, 29 July–1 August 2009; Volume 31. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristín, J.; Méndez, V.; Campos, D. Informational Entropy Threshold as a Physical Mechanism for Explaining Tree-like Decision Making in Humans. Entropy 2022, 24, 1819. https://doi.org/10.3390/e24121819
Cristín J, Méndez V, Campos D. Informational Entropy Threshold as a Physical Mechanism for Explaining Tree-like Decision Making in Humans. Entropy. 2022; 24(12):1819. https://doi.org/10.3390/e24121819
Chicago/Turabian StyleCristín, Javier, Vicenç Méndez, and Daniel Campos. 2022. "Informational Entropy Threshold as a Physical Mechanism for Explaining Tree-like Decision Making in Humans" Entropy 24, no. 12: 1819. https://doi.org/10.3390/e24121819
APA StyleCristín, J., Méndez, V., & Campos, D. (2022). Informational Entropy Threshold as a Physical Mechanism for Explaining Tree-like Decision Making in Humans. Entropy, 24(12), 1819. https://doi.org/10.3390/e24121819