Rényi Entropies of Multidimensional Oscillator and Hydrogenic Systems with Applications to Highly Excited Rydberg States
Abstract
:1. Introduction
2. The D-Dimensional Oscillator and Hydrogenic Eigenvalue Problems
2.1. The D-Dimensional Oscillator Eigenvalue Problem
2.2. The D-Dimensional Hydrogenic Eigenvalue Problem
3. Rényi Entropies of General and Central-Potential Quantum Systems: Lower and Upper Bounds
4. The Rényi Entropies of Multidimensional Harmonic Systems
5. The Rényi Entropies of Multidimensional Hydrogenic Systems
6. Rényi Entropies of Rydberg Oscillator and Hydrogenic States
6.1. Rényi Entropies of Rydberg Oscillator States
6.2. Rényi Entropies of Rydberg Hydrogenic States
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rényi, A. On measures of information and entropy. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability; Neyman, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Rényi, A. Probability Theory; North Holland: Amsterdam, The Netherlands, 1970. [Google Scholar]
- March, N.H.; Deb, B.M. The Single-Particle Density in Physics and Chemistry; Academic Press: New York, NY, USA, 1987. [Google Scholar]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- López-Ruiz, R. Shannon information, LMC complexity and Rényi entropies: A straightforward approach. Biophys. Chem. 2005, 115, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pipek, J.; Varga, I. Statistical electron densities. Int. J. Quant. Chem. 1997, 64, 85–93. [Google Scholar] [CrossRef]
- Romera, E.; Nagy, A. Fisher-Rényi entropy product and information plane. Phys. Lett. A 2008, 372, 6823–6825. [Google Scholar] [CrossRef]
- Catalán, R.G.; Garay, J.; López-Ruiz, R. Features of the extension of a statistical measure of complexity to continuous systems. Phys. Rev. E 2002, 66, 011102. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moreno, P.; Angulo, J.C.; Dehesa, J.S. A generalized complexity measure based on the Rényi entropy. Eur. Phys. J. D 2014, 68, 1–6. [Google Scholar] [CrossRef]
- Sobrino-Coll, N.; Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Complexity measures and uncertainty relations of the high-dimensional harmonic and hydrogenic systems. J. Stat. Mech. 2017, 083102. [Google Scholar] [CrossRef]
- Cover, T.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Hilgevoord, J. The standard deviation is not an adequate measure of quantum uncertainty. Am. J. Phys. 2002, 70, 983. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Rudnicki, L. Entropic Uncertainty Relations in Quantum Physics. In Statistical Complexities: Application to Electronic Structure; Sen, R.D., Ed.; Springer: Berlin, Germany, 2012. [Google Scholar]
- Dehesa, J.S.; López-Rosa, S.; Manzano, D. Entropy and complexity analyses of D-dimensional quantum systems. In Statistical Complexities: Application to Electronic Structure; Sen, K.D., Ed.; Springer: Berlin, Germany, 2012. [Google Scholar]
- Jizba, P.; Dunningham, J.A.; Joo, J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015, 355, 87–114. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 2006, 74, 052101. [Google Scholar] [CrossRef] [Green Version]
- Zozor, S.; Portesi, M.; Vignat, C. Some extensions of the uncertainty principle. Physica A 2008, 387, 4800–4808. [Google Scholar] [CrossRef] [Green Version]
- Branderburger, A.; La Mura, P.; Zoble, S. Rényi entropy, signed probabilities and the qubit. Entropy 2022, 24, 1412. [Google Scholar] [CrossRef]
- Bovino, F.A.; Castagnoli, G.; Ekert, A.; Horodecki, P.; Alves, C.M.; Sergienko, A.V. Direct Measurement of nonlinear properties of bipartite quantum states. Phys. Rev. Lett. 2005, 95, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, R.; Ma, R.; Preiss, P.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Greiner, M. Measuring entanglement entropy in a quantum many-body system. Nature 2015, 528, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P.M.; Greiner, M. Quantum thermalization through entanglement in an isolated many-body system. Science 2016, 353, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Brydges, T.; Elben, A.; Jurcevic, P.; Vermersch, B.; Maier, C.; Lanyon, B.P.; Zoller, P.; Blatt, R.; Roos, C.F. Probing Rényi entanglement entropy via randomized measurements. Science 2019, 364, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.H.; Ho, Y.K. Benchmark calculations of Rényi, Tsallis entropies, and Onicescu information energy for ground state helium using correlated Hylleraas wave functions. Int. J. Quantum Chem. 2019, 119, e25928. [Google Scholar] [CrossRef]
- Beck, C.; Schlögl, F. Thermodynamics of Chaotic Systems; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Jizba, P.; Korbel, J. Multifractal diffusion entropy analysis: Optimal bin width of probability histograms. Physica A 2014, 413, 438–458. [Google Scholar] [CrossRef] [Green Version]
- Wilming, H.; Goihl, M.; Roth, I.; Eisert, J. Entanglement-ergodic quantum systems equilibrate exponentially well. Phys. Rev. Lett. 2019, 123, 200604. [Google Scholar] [CrossRef]
- Jizba, P.; Arimitsu, T. The world according to Rényi: Thermodynamics of multifractal systems. Ann. Phys. 2004, 312, 17–59. [Google Scholar] [CrossRef]
- Fuentes, J.; Goncalves, J. Rényi entropy in statistical mechanics. Entropy 2022, 24, 1080. [Google Scholar] [CrossRef] [PubMed]
- Pennini, F.; Plastino, A.R.; Plastino, A. Rényi entropies and Fisher informations as measures of nonextensivity in a Tsallis setting. Physica A 1998, 258, 446–457. [Google Scholar] [CrossRef]
- Pennini, F.; Plastino, A. Disequilibrium, thermodynamic relations, and Rényi entropy. Phys. Lett. A 2017, 381, 212–215. [Google Scholar] [CrossRef]
- Pennini, F.; Plastino, A. Rényi entropy, statistical order and van der Waals gas. Entropy 2022, 24, 1067. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-entropic measures in free and confined hydrogen atom. Int. J. Quantum Chem. 2018, 118, 25596. [Google Scholar] [CrossRef]
- Aptekarev, A.I.; Dehesa, J.S.; Sánchez-Moreno, P.; Tulyakov, D.N. Rényi entropy of the infinite well potential in momentum space and Dirichlet-like trigonometric functionals. J. Math. Chem. 2012, 50, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Guerrero, A.; Sánchez-Moreno, P. Entropy and complexity analysis of the D-dimensional rigid rotator and hyperspherical harmonics. J. Math. Chem. 2015, 53, 573–589. [Google Scholar] [CrossRef] [Green Version]
- Aptekarev, A.I.; Dehesa, J.S.; Sánchez-Moreno, P.; Tulyakov, D.N. Asymptotics of Lp-norms of Hermite polynomials and Rényi entropy of Rydberg oscillator states. Contemp. Math. 2012, 578, 19–29. [Google Scholar]
- Olendski, O. Rényi and Tsallis entropies of the Dirichlet and Neumann one-dimensional quantum wells. Int. J. Quantum Chem. 2020, 120, 26220. [Google Scholar] [CrossRef] [Green Version]
- Olendski, O. Rényi and Tsallis Entropies of the Aharonov-Bohm Ring in Uniform Magnetic Fields. Entropy 2019, 21, 1060. [Google Scholar] [CrossRef]
- Olendski, O. Quantum-information theory of a Dirichlet ring with Aharonov-Bohm field. Eur. Phys. J. Plus 2022, 137, 451–475. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [Green Version]
- Rosso, O.A.; Martin, M.T.; Figliola, A.; Keller, K.; Plastino, A. EEG analysis using wavelet-based information tools. J. Neurosci. Meth. 2006, 153, 163–182. [Google Scholar] [CrossRef]
- Tozzi, A.; Peters, J.F.; Cankaya, M.N. The informational entropy endowed in cortical oscillations. Cogn. Neurodyn. 2018, 12, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Aczel, J.; Daroczy, Z. On Measures of Information and Their Characterizations; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Leonenko, N.; Pronzato, L.; Savani, V. A class of Rényi information estimators for multidimensional densities. Ann. Stat. 2008, 36, 2153–2182. [Google Scholar] [CrossRef]
- Rolandi, A.; Wilming, H. Extensive Rényi entropies in matrix product states. arXiv 2020, arXiv:2008.11764v2. [Google Scholar]
- Zettili, N. Quantum Mechanics: Concepts and Applications; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Landau, L.D.; Lifshitz, L.M. Quantum Mechanics: Non-Relativistic Theory; Butterworth-Heinemann: Oxford, UK, 1981. [Google Scholar]
- Bloch, S.C. Introduction to Classical and Quantum Harmonic Oscillators; Wiley-Interscience: New York, NY, USA, 1997. [Google Scholar]
- Moshinsky, M.; Smirnov, Y.F. The Harmonic Oscillator in Modern Physics; CRC Press: New York, NY, USA, 1996. [Google Scholar]
- Henri-Rousseau, O.; Blaise, P. Quantum Oscillators; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Nielsen, F.; Nock, R. A closed-form expression for the Sharma-Mittal entropy of exponential families. J. Phys. A Math. Theor. 2012, 45, 032003. [Google Scholar] [CrossRef] [Green Version]
- Nikiforov, F.; Uvarov, V.B. Special Functions in Mathematical Physics; Birkhauser-Verlag: Basel, Switzerland, 1988. [Google Scholar]
- Marcellán, F.; Branquinho, A.; Petronilho, J. Classical orthogonal polynomials: A functional approach. Acta Appl. Math. 1994, 34, 283–303. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Exact Rényi entropies of of D-dimensional harmonic systems. Eur. Phys. J. Spec. Top. 2018, 227, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Rényi entropies for multidimensional hydrogenic systems in position and momentum spaces. J. Stat. Mech. 2018, 073203. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moreno, P.; Dehesa, J.S.; Zarzo, A.; Guerrero, A. Rényi entropies, Lq norms and linearization of powers of hypergeometric orthogonal polynomials by means of multivariate special function. Appl. Math. Comput. 2013, 223, 25–33. [Google Scholar] [CrossRef]
- Srivastava, H.M. A unified theory of polynomial expansions and their applications involving Clebsch-Gordan type linearization relations and Neumann series. Astrophys. Space Sci. 1988, 150, 251–266. [Google Scholar] [CrossRef]
- Oks, E. Advances in Physics of Rydberg Atoms and Molecules; I.O.P. Publishing: Bristol, UK, 2021. [Google Scholar]
- Gallagher, T.F. Production of Rydberg atoms. In Atomic, Molecular and Optical Physics Handbook; Drake, G.W., Ed.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Gallagher, T.F. Rydberg Atoms; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Aptekarev, A.I.; Buyarov, V.; Dehesa, J.S. Asymptotic behavior of the Lp-norms and the entropy for general orthogonal polynomials. Russ. Acad.Sci. Sbornik Math. 1994, 185, 3–30. [Google Scholar]
- Buyarov, V.S.; Dehesa, J.S.; Martinez-Finkelshtein, A.; Saff, E.B. Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights. J. Approx. Theory 1999, 99, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic functionals of Laguerre and Gegenbauer polynomials with large parameters. J. Phys. A Math. Theor. 2017, 50, 215206. [Google Scholar] [CrossRef] [Green Version]
- Aptekarev, A.I.; Dehesa, J.S.; Martínez-Finkelshtein, A. Asymptotics of orthogonal polynomials’ entropy. J. Comp. Appl. Math. 2010, 233, 1355–1365. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, N.; Dehesa, J.S. Parameter and q-symptotics of Lq-norms of hypergeometric orthogonal polynomials. Int. J. Quantum Chem. 2022, 27013. [Google Scholar]
- Dehesa, J.S.; Toranzo, I.V. Dispersion and entropy-like measures of multidimensional harmonic systems. Application to Rydberg states and high-dimensional oscillators. Eur. Phys. J. Plus 2020, 135, 721. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Toranzo, I.V.; Puertas-Centeno, D. Entropic measures of Rydberg-like states. Int. J. Quantum Chem. 2017, 117, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Aptekarev, A.I.; Tulyakov, D.N.; Toranzo, I.V.; Dehesa, J.S. Rényi entropies of the highly-excited states of multidimensional harmonic oscillators by use of strong Laguerre asymptotics. Eur. Phys. J. B 2016, 89, 85. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Dehesa, J.S. Rényi, Shannon and Tsallis entropies of Rydberg hydrogenic systems. EPL Europhys. Lett. 2016, 113, 48003. [Google Scholar] [CrossRef] [Green Version]
- Toranzo, I.V.; Puertas-Centeno, D.; Dehesa, J.S. Entropic properties of D-dimensional Rydberg systems. Physica A 2016, 462, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Aptekarev, A.I.; Belega, E.D.; Dehesa, J.S. Rydberg multidimensional states: Rényi and Shannon entropies in momentum space. J. Phys. A Math. Theor. 2021, 54, 035305. [Google Scholar] [CrossRef]
- Puertas-Centeno, D.; Toranzo, I.V.; Dehesa, J.S. Heisenberg and entropic uncertainty measures for high-dimensional harmonic systems. Entropy 2017, 19, 164. [Google Scholar] [CrossRef] [Green Version]
- Puertas-Centeno, D.; Temme, N.M.; Toranzo, I.V.; Dehesa, J.S. Entropic uncertainty measures for large dimensional hydrogenic systems. J. Math. Phys. 2017, 58, 103302. [Google Scholar] [CrossRef] [Green Version]
- Lundee, S.R. Fine Structure in High-L Rydberg States: A Path to Properties of Positive Ions. Adv. At. Mol. Opt. Phys. 2005, 52, 161–208. [Google Scholar]
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885–964. [Google Scholar] [CrossRef] [Green Version]
- Saffman, M.; Walker, T.G.; Mollmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 2010, 82, 2313–2363. [Google Scholar] [CrossRef] [Green Version]
- Browaeys, A.; Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 2020, 16, 132–142. [Google Scholar] [CrossRef]
- Morgado, M.; Whitlock, S. Quantum simulation and computing with Rydberg-interacting qubits. AVS Quantum Sci. 2021, 3, 023501. [Google Scholar] [CrossRef]
- Kruckenhauser, A.; van Bijnen, R.; Zache, T.V.; Di Liberto, M.; Zoller, P. High-dimensional SO(4)-ymmetric Rydberg manifolds for quantum simulation. arXiv 2022, arXiv:2206.01108v1. [Google Scholar]
- Liu, B.; Zhang, L.H.; Liu, Z.K.; Zhang, Z.Y.; Zhu, Z.H.; Gao, W.; Guo, G.C.; Ding, D.S.; Shi, B.S. Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor. arXiv 2022, arXiv:2206.06576. [Google Scholar]
- Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 1994, 50, 3065–3079. [Google Scholar] [CrossRef]
- Avery, J. Generalized Sturmians and Atomic Spectra; World Scientific Publishing: New York, NY, USA, 2006. [Google Scholar]
- Coletti, C.; Calderini, D.; Aquilanti, V. D-dimensional Kepler-Coulomb Sturmians and hyperspherical harmonics as complete orthonormal atomic and molecular orbitals. Adv. Quantum Chem. 2013, 67, 73–127. [Google Scholar]
- Van Assche, W.; Yáñez, R.J.; González-Férez, R.; Dehesa, J.S. Functionals of Gegenbauer polynomials and D-dimensional hydrogenic momentum expectation values. J. Math. Phys. 2000, 41, 6600–6613. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Sánchez-Moreno, P.; Dehesa, J.S. Upper bounds on uncertainty products and complexities of quantum systems. Phys. Rev. A 2011, 84, 042105. [Google Scholar] [CrossRef]
- Zozor, S.; Vignat, C. On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles. Physica A 2007, 375, 499–517. [Google Scholar] [CrossRef]
- Dehesa, J.S. Spherical-symmetry and spin effects on the uncertainty measures of multidimensional quantum systems with central potentials. Entropy 2021, 23, 607. [Google Scholar] [CrossRef] [PubMed]
- Dehesa, J.S.; Rudnicki, L.; Sánchez-Moreno, P. The Rényi-entropy-based uncertainty relation for D-dimensional central potentials. Prepr. UGR 2021, 1–11. [Google Scholar]
- Sánchez-Moreno, P.; Zozor, S.; Dehesa, J.S. Upper bounds on Shannon and Rényi entropies for central potentials. J. Math. Phys. 2011, 52, 022105. [Google Scholar] [CrossRef]
- Angulo, J.C. Generalized position–momentum uncertainty products: Inclusion of moments with negative order and application to atoms. Phys. Rev. A 2011, 83, 062102. [Google Scholar] [CrossRef]
- Angulo, J.C.; Bouvrie, P.A.; Antolín, J. Uncertainty inequalities among frequency moments and radial expectation values: Applications to atomic systems. J. Math. Phys. 2012, 53, 043512. [Google Scholar] [CrossRef] [Green Version]
- Dembo, A.; Cover, T.M.; Thomas, J.A. Information theoretic inequalities. IEEE Trans. Inform. Theor. 1991, 37, 1501–1518. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Gálvez, F.J. Rigorous bounds to density-dependent quantities of D- dimensional many-fermion systems. Phys. Rev. A 1988, 37, 3634–3637. [Google Scholar] [CrossRef] [PubMed]
- Dehesa, J.S.; Gálvez, F.J.; Porras, I. Bounds to density-dependent quantities of D-dimensional many-particle systems in position and momentum spaces: Applications to atomic systems. Phys. Rev. A 1989, 40, 35–40. [Google Scholar] [CrossRef]
- López-Rosa, S.; Angulo, J.C.; Dehesa, J.S.; Yáñez, R.J. Existence conditions and spreading properties of extreme entropy D-dimensional distributions. Physica A 2008, 387, 2243–2255, Erratum in Physica A 2008, 387, 4729–4730. [Google Scholar] [CrossRef]
- Brody, D.C.; Buckley, I.R.C.; Constantinou, I.C. Option price calibration from Rényi entropy. Phys. Lett. A 2007, 366, 298–307. [Google Scholar] [CrossRef]
- Bashkirov, A.G. Maximum Renyi entropy principle for systems with power-law hamiltonians. Phys. Rev. Lett. 2004, 93, 130601. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Galvez, F.J. A lower bound for the nuclear kinetic energy. Phys. Lett. B 1985, 156, 287–290. [Google Scholar] [CrossRef]
- Costa, J.A.; Hero, A.O., III; Vignat, C. On solutions to multivariate maximum α-entropy problems. Lect. Notes Comput. Sci. 2003, 2683, 211–227. [Google Scholar]
- Sánchez-Moreno, P.; Dehesa, J.S.; Manzano, D.; Yáñez, R.J. Spreading lengths of Hermite polynomials. J. Comput. Appl. Math. 2010, 233, 2136–2148. [Google Scholar] [CrossRef] [Green Version]
- Zozor, S.; Portesi, M.; Sánchez-Moreno, P.; Dehesa, J.S. Position–momentum uncertainty relation based on moments of arbitrary orders. Phys. Rev. A 2011, 83, 052107. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Ruiz, J. Quantum information entropies and orthogonal polynomials. J. Comput. Appl. Math. 2001, 133, 23–46. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Sánchez-Ruiz, J.; Artés, P.L.; Martínez-Finkelshtein, A.; Dehesa, J.S. General linearization formulas for products of continuous hypergeometric-type polynomials. J. Phys. A 1999, 32, 7345–7366. [Google Scholar] [CrossRef]
- Dehesa, J.-S.; Moreno-Balcázar, J.J.; Yáñez, R.J. Linearization and Krein-like functionals of hypergeometric orthogonal polynomials. J. Math. Phys. 2018, 59, 123504. [Google Scholar] [CrossRef] [Green Version]
- Dehesa, J.S.; Yáñez, R.J.; Aptekarev, A.I.; Buyarov, V. Strong asymptotics of Laguerre polynomials and information entropies of 2D harmonic oscillator and 1D Coulomb potentials. J. Math. Phys. 1998, 39, 3050–3060. [Google Scholar] [CrossRef]
- Sen, K.D.; Katriel, J. Information entropies for eigendensities of homogeneous potentials. J. Chem. Phys. 2006, 125, 074117. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehesa, J.S. Rényi Entropies of Multidimensional Oscillator and Hydrogenic Systems with Applications to Highly Excited Rydberg States. Entropy 2022, 24, 1590. https://doi.org/10.3390/e24111590
Dehesa JS. Rényi Entropies of Multidimensional Oscillator and Hydrogenic Systems with Applications to Highly Excited Rydberg States. Entropy. 2022; 24(11):1590. https://doi.org/10.3390/e24111590
Chicago/Turabian StyleDehesa, Jesús S. 2022. "Rényi Entropies of Multidimensional Oscillator and Hydrogenic Systems with Applications to Highly Excited Rydberg States" Entropy 24, no. 11: 1590. https://doi.org/10.3390/e24111590
APA StyleDehesa, J. S. (2022). Rényi Entropies of Multidimensional Oscillator and Hydrogenic Systems with Applications to Highly Excited Rydberg States. Entropy, 24(11), 1590. https://doi.org/10.3390/e24111590