Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting
Abstract
:1. Introduction
 (1)
 Compared with existing methods, our proposed method is able to address the nonlinear data model problem faced by the traditional MC methods. It is also able to address the global structure problem in existing deep learningbased MC methods.
 (2)
 The proposed method can be pretrained to learn the global image structure and underlying relationship between input matrix data with missing elements and the recovered output data. Once successfully trained, the network does not need to be optimized again in the subsequent image inpainting tasks, thereby providing a highperformance and easytodeploy nonlinear matrix completion solution.
 (3)
 To improve the performance of the proposed method, a new algorithm for prefilling the missing elements of the image is proposed. This new padding method performs global analysis of the matrix data to predict the missing elements as their initial values, which improves the performance of matrix completion and image inpainting.
2. Related Work
3. The Proposed Method
3.1. Mathematical Model of the DMFCNet Method
3.1.1. $\mathbf{U}$ and $\mathbf{V}$ Updating Modules
3.1.2. $\mathbf{X}$ Updating Module
3.2. PreFilling
Algorithm 1 DMFCNet1 

Algorithm 2 DMFCNet2 

3.3. Loss Function
3.4. Training
4. Experiments
4.1. Datasets
4.2. Experimental Settings
4.3. Image InPainting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
 Candes, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef] [Green Version]
 Fan, J.; Chow, T.W. Sparse subspace clustering for data with missing entries and highrank matrix completion. Neural Netw. 2017, 93, 36–44. [Google Scholar] [CrossRef] [PubMed]
 Liu, G.; Li, P. Lowrank matrix completion in the presence of high coherence. IEEE Trans. Signal Process. 2016, 64, 5623–5633. [Google Scholar] [CrossRef]
 Lu, X.; Gong, T.; Yan, P.; Yuan, Y.; Li, X. Robust alternative minimization for matrix completion. IEEE Trans. Syst. Man Cybern. Part (Cybern.) 2012, 42, 939–949. [Google Scholar]
 Wang, H.; Zhao, R.; Cen, Y. Rank adaptive atomic decomposition for lowrank matrix completion and its application on image recovery. Neurocomputing 2014, 145, 374–380. [Google Scholar] [CrossRef]
 LaraCabrera, R.; GonzálezPrieto, A.; Ortega, F.; Bobadilla, J. Evolving matrixfactorizationbased collaborative filtering using genetic programming. Appl. Sci. 2020, 10, 675. [Google Scholar] [CrossRef] [Green Version]
 Zhang, D.; Liu, L.; Wei, Q.; Yang, Y.; Yang, P.; Liu, Q. Neighborhood aggregation collaborative filtering based on knowledge graph. Appl. Sci. 2020, 10, 3818. [Google Scholar] [CrossRef]
 Hu, Y.; Zhang, D.; Ye, J.; Li, X.; He, X. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2117–2130. [Google Scholar] [CrossRef]
 Le Pendu, M.; Jiang, X.; Guillemot, C. Light field inpainting propagation via low rank matrix completion. IEEE Trans. Image Process. 2018, 27, 1981–1993. [Google Scholar] [CrossRef] [Green Version]
 AlamedaPineda, X.; Ricci, E.; Yan, Y.; Sebe, N. Recognizing emotions from abstract paintings using nonlinear matrix completion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5240–5248. [Google Scholar]
 Yang, Y.; Feng, Y.; Suykens, J.A. Correntropy based matrix completion. Entropy 2018, 20, 171. [Google Scholar] [CrossRef] [Green Version]
 Ji, H.; Liu, C.; Shen, Z.; Xu, Y. Robust video denoising using low rank matrix completion. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1791–1798. [Google Scholar]
 Cabral, R.; De la Torre, F.; Costeira, J.P.; Bernardino, A. Matrix completion for weaklysupervised multilabel image classification. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 121–135. [Google Scholar] [CrossRef] [PubMed]
 Luo, Y.; Liu, T.; Tao, D.; Xu, C. Multiview matrix completion for multilabel image classification. IEEE Trans. Image Process. 2015, 24, 2355–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Harvey, N.J.; Karger, D.R.; Yekhanin, S. The complexity of matrix completion. In Proceedings of the Seventeenth Annual ACMSIAM Symposium on Discrete Algorithm, Alexandria, VA, USA, 9–12 January 2006; pp. 1103–1111. [Google Scholar]
 Lin, Z.; Chen, M.; Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted lowrank matrices. arXiv 2010, arXiv:1009.5055. [Google Scholar]
 Shen, Y.; Wen, Z.; Zhang, Y. Augmented Lagrangian alternating direction method for matrix separation based on lowrank factorization. Optim. Methods Softw. 2014, 29, 239–263. [Google Scholar] [CrossRef] [Green Version]
 Toh, K.C.; Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problem. Pac. J. Optim. 2010, 6, 615–640. [Google Scholar]
 Cai, J.F.; Candes, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
 Chen, C.; He, B.; Yuan, X. Matrix completion via an alternating direction method. IMA J. Numer. Anal. 2012, 32, 227–245. [Google Scholar] [CrossRef]
 Wen, Z.; Yin, W.; Zhang, Y. Solving a lowrank factorization model for matrix completion by a nonlinear successive overrelaxation algorithm. Math. Program. Computn. 2012, 4, 333–361. [Google Scholar] [CrossRef]
 Han, H.; Huang, M.; Zhang, Y.; Bhatti, U.A. An extendedtaginduced matrix factorization technique for recommender systems. Information 2018, 9, 143. [Google Scholar] [CrossRef] [Green Version]
 Wang, C.; Liu, Q.; Wu, R.; Chen, E.; Liu, C.; Huang, X.; Huang, Z. Confidenceaware matrix factorization for recommender systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Orleans, LA, USA, 2–7 February 2018; Volume 32, p. 1. [Google Scholar]
 Luo, Z.; Zhou, M.; Li, S.; Xia, Y.; You, Z.; Zhu, Q.; Leung, H. An efficient secondorder approach to factorize sparse matrices in recommender systems. IEEE Trans. Ind. Inform. 2015, 11, 946–956. [Google Scholar] [CrossRef]
 Luo, Z.; Zhou, M.; Li, S.; Xia, Y.; You, Z.; Zhu, Q. A nonnegative latent factor model for largescale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 579–592. [Google Scholar] [CrossRef]
 Cao, X.; Zhao, Q.; Meng, D.; Chen, Y.; Xu, Z. Robust lowrank matrix factorization under general mixture noise distributions. IEEE Trans. Image Process. 2016, 25, 4677–4690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Lawrence, N.; Hyvärinen, A. Probabilistic nonlinear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 2005, 6, 2005. [Google Scholar]
 Fan, J.; Chow, T. Deep learning based matrix completion. Neurocomputing 2017, 266, 540–549. [Google Scholar] [CrossRef]
 Fan, J.; Cheng, J. Matrix completion by deep matrix factorization. Neural Netw. 2018, 98, 34–41. [Google Scholar] [CrossRef] [PubMed]
 Nguyen, D.M.; Tsiligianni, E.; Calderbank, R.; Deligiannis, N. Regularizing autoencoderbased matrix completion models via manifold learning. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1880–1884. [Google Scholar]
 Abavisani, M.; Patel, V.M. Deep sparse representationbased classification. IEEE Signal Process. Lett. 2019, 26, 948–952. [Google Scholar] [CrossRef] [Green Version]
 Bobadilla, J.; Alonso, S.; Hernando, A. Deep learning architecture for collaborative filtering recommender systems. Appl. Sci. 2020, 10, 2441. [Google Scholar] [CrossRef] [Green Version]
 Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv. (CSUR) 2019, 52, 1–38. [Google Scholar] [CrossRef] [Green Version]
 Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th International Conference on World Wide Web, New York, NY, USA, 18–22 May 2015; pp. 111–112. [Google Scholar]
 Guo, D.; Lu, H.; Qu, X. A fast low rank Hankel matrix factorization reconstruction method for nonuniformly sampled magnetic resonance spectroscopy. IEEE Access 2017, 5, 16033–16039. [Google Scholar] [CrossRef]
 Huang, Y.; Zhao, J.; Wang, Z.; Guo, D.; Qu, X. Complex exponential signal recovery with deep hankel matrix factorization. arXiv 2020, arXiv:2007.06246. [Google Scholar]
 Signoretto, M.; Cevher, V.; Suykens, J.A. An SVDfree approach to a class of structured low rank matrix optimization problems with application to system identification. In Proceedings of the IEEE Conference on Decision and Control (CDC), Firenze, Italy, 10–13 December 2013. [Google Scholar]
 Lee, D.; Jin, K.H.; Kim, E.Y.; Park, S.H.; Ye, J.C. Acceleration of MR parameter mapping using annihilating filterbased low rank hankel matrix (ALOHA). Magn. Reson. Med. 2016, 76, 1848–1864. [Google Scholar] [CrossRef] [PubMed]
 Everingham, M.; Gool, L.V.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 3–338. [Google Scholar] [CrossRef] [Green Version]
 Everingham, M.; Eslami, S.A.; Gool, L.V.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
 Nie, F.; Hu, Z.; Li, X. Matrix completion based on nonconvex lowrank approximation. IEEE Trans. Image Process. 2019, 28, 2378–2388. [Google Scholar] [CrossRef]
 Chen, L.; Jiang, X.; Liu, X.; Zhou, Z. Robust LowRank Tensor Recovery via Nonconvex Singular Value Minimization. IEEE Trans. Image Process. 2020, 29, 9044–9059. [Google Scholar] [CrossRef]
 Gu, K.; Zhai, G.; Yang, X.; Zhang, W. Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 2014, 17, 50–63. [Google Scholar] [CrossRef]
 Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
 Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar]
Missing Rate  Images NO.  PSNR/SSIM  

DMFCNet1  DMFCNet2  
30%  1  29.89/0.904  33.29/0.956  31.11/0.952  34.68/0.971 
2  27.63/0.915  30.59/0.958  28.08/0.953  31.94/0.974  
3  30.80/0.908  33.44/0.959  32.21/0.963  35.29/0.973  
4  30.10/0.902  32.56/0.946  31.92/0.946  33.70/0.960  
5  32.52/0.875  36.47/0.956  35.59/0.968  38.32/0.976  
Average  30.19/0.901  33.27/0.955  31.78/0.956  34.78/0.971  
50%  1  27.46/0.847  30.04/0.914  27.24/0.879  30.30/0.929 
2  23.98/0.863  27.23/0.929  23.24/0.856  27.74/0.939  
3  27.97/0.852  30.19/0.921  27.77/0.896  31.00/0.938  
4  27.56/0.831  29.73/0.898  28.18/0.873  30.04/0.908  
5  29.85/0.804  33.54/0.919  31.58/0.923  34.39/0.947  
Average  27.37/0.840  30.14/0.916  27.60/0.885  30.69/0.932  
70%  1  24.92/0.763  26.23/0.834  23.79/0.729  26.12/0.829 
2  21.65/0.781  23.43/0.860  19.12/0.665  22.29/0.810  
3  25.02/0.770  26.62/0.861  23.94/0.744  26.66/0.853  
4  24.93/0.721  26.47/0.801  24.95/0.739  26.62/0.808  
5  27.70/0.746  29.82/0.859  28.14/0.832  31.47/0.884  
Average  24.84/0.756  26.51/0.843  23.99/0.742  26.63/0.837 
Missing Rate  Images NO.  PSNR/SSIM  

MF [21]  NNM [16]  TNNM [8]  DLMC [28]  NCMC [41]  LNOP [42]  DMFCNet1  DMFCNet2  
20%  1  29.72/0.890  32.06/0.929  32.30/0.935  31.22/0.913  32.05/0.939  32.55/0.934  35.60/0.972  37.57/0.984 
2  26.10/0.831  29.24/0.896  29.60/0.904  29.09/0.888  29.85/0.912  30.12/0.906  33.35/0.972  35.03/0.985  
3  30.90/0.901  33.26/0.939  33.54/0.943  32.70/0.933  33.37/0.948  33.92/0.945  35.77/0.973  37.69/0.984  
4  31.99/0.938  33.39/0.951  33.63/0.954  32.26/0.938  33.73/0.959  33.81/0.955  34.97/0.969  36.20/0.978  
5  35.71/0.939  37.31/0.959  37.71/0.961  36.92/0.955  37.55/0.967  37.87/0.962  39.04/0.972  41.08/0.986  
Average  30.88/0.900  33.05/0.935  33.36/0.940  32.44/0.926  33.31/0.945  33.65/0.940  35.75/0.972  37.51/0.983  
30%  1  27.42/0.822  29.37/0.873  29.68/0.883  29.35/0.867  29.69/0.893  29.82/0.881  33.29/0.956  34.68/0.971 
2  23.91/0.762  25.80/0.916  26.14/0.827  26.46/0.825  26.70/0.842  26.54/0.827  30.59/0.958  31.94/0.974  
3  28.63/0.845  30.29/0.885  30.68/0.894  30.35/0.891  30.88/0.909  31.02/0.896  33.44/0.959  35.29/0.973  
4  29.54/0.895  30.72/0.913  31.07/0.919  30.34/0.903  31.31/0.927  31.15/0.920  32.56/0.946  33.70/0.960  
5  33.32/0.904  34.48/0.931  34.87/0.932  34.68/0.931  35.03/0.944  35.05/0.934  36.47/0.956  38.32/0.976  
Average  28.56/0.846  30.13/0.904  30.49/0.891  30.24/0.883  30.72/0.903  30.72/0.892  33.27/0.955  34.78/0.971  
40%  1  25.84/0.771  27.13/0.804  27.43/0.818  27.40/0.799  27.70/0.836  27.56/0.812  31.00/0.932  32.10/0.952 
2  21.04/0.655  23.16/0.718  23.44/0.732  23.93/0.730  23.96/0.740  23.87/0.732  28.68/0.937  29.17/0.953  
3  26.17/0.777  27.65/0.816  28.07/0.828  28.36/0.839  28.56/0.854  28.38/0.829  31.60/0.939  32.50/0.956  
4  27.36/0.842  28.69/0.865  29.04/0.874  28.79/0.863  29.42/0.889  29.14/0.874  30.57/0.916  31.81/0.940  
5  30.72/0.852  32.07/0.889  32.51/0.893  33.02/0.900  32.80/0.911  32.63/0.895  34.23/0.930  36.12/0.962  
Average  26.23/0.779  27.74/0.818  28.10/0.830  28.30/0.826  28.49/0.846  28.32/0.828  31.21/0.931  32.34/0.953  
50%  1  24.01/0.685  25.07/0.717  25.37/0.731  25.10/0.703  25.54/0.746  25.42/0.722  30.04/0.914  30.30/0.929 
2  19.65/0.588  20.95/0.626  21.27/0.635  21.75/0.639  21.56/0.634  21.57/0.632  27.23/0.929  27.74/0.939  
3  24.60/0.713  25.40/0.733  25.96/0.757  26.42/0.772  26.50/0.790  26.12/0.751  30.19/0.921  31.00/0.938  
4  25.69/0.784  26.82/0.805  27.26/0.819  27.08/0.812  27.63/0.837  27.29/0.816  29.73/0.898  30.04/0.908  
5  29.26/0.798  29.92/0.839  30.54/0.842  31.19/0.858  31.06/0.867  30.60/0.844  33.54/0.919  34.39/0.947  
Average  24.64/0.714  25.63/0.744  26.08/0.757  26.31/0.757  26.46/0.775  26.20/0.753  30.14/0.916  30.69/0.932  
60%  1  22.27/0.618  23.21/0.624  23.50/0.642  23.31/0.623  23.53/0.643  23.52/0.631  28.17/0.889  28.27/0.893 
2  16.75/0.468  18.81/0.518  19.04/0.527  19.36/0.530  18.39/0.481  19.28/0.524  25.48/0.907  25.34/0.901  
3  21.99/0.607  23.49/0.641  24.11/0.666  24.43/0.684  24.34/0.673  24.22/0.654  28.94/0.904  29.05/0.907  
4  24.04/0.704  24.94/0.722  25.33/0.739  25.37/0.735  25.55/0.754  25.41/0.736  28.23/0.862  28.45/0.868  
5  26.44/0.692  28.15/0.770  28.71/0.869  29.54/0.810  29.17/0.796  28.83/0.773  32.08/0.901  32.88/0.924  
Average  22.30/0.618  23.72/0.655  24.14/0.689  24.40/0.676  24.20/0.669  24.25/0.724  28.58/0.893  28.80/0.900  
70%  1  21.04/0.520  21.41/0.515  21.82/0.532  21.50/0.494  21.17/0.476  21.85/0.518  26.23/0.834  26.12/0.829 
2  15.50/0.384  16.77/0.404  16.84/0.405  17.04/0.406  15.10/0.312  17.25/0.412  23.43/0.860  22.29/0.810  
3  20.80/0.520  21.32/0.515  21.99/0.539  22.19/0.549  21.17/0.481  22.09/0.531  26.62/0.861  26.66/0.853  
4  22.59/0.617  23.16/0.623  23.38/0.636  23.50/0.642  23.12/0.620  23.57/0.634  26.47/0.801  26.62/0.808  
5  24.86/0.614  25.78/0.683  26.12/0.664  27.06/0.719  26.09/0.663  26.53/0.680  29.82/0.859  31.47/0.884  
Average  21.00/0.531  21.69/0.548  22.03/0.555  22.26/0.562  21.33/0.510  22.26/0.555  26.51/0.843  26.63/0.837 
Image Size  Missing Rate  MF  NNM  TNNM  DLMC  NCMC  LNOP  DMFCNet1  DMFCNet2 

256 × 256  30%  0.095  4.905  2.974  16.129  5.651  2.384  0.390  0.341 
50%  0.096  4.340  3.455  17.429  3.507  2.165  0.420  0.339  
70%  0.130  3.534  6.816  18.644  2.260  1.649  0.436  0.329  
512 × 512  30%  0.288  23.380  12.416  59.581  48.207  9.120  1.763  1.019 
50%  0.199  18.998  17.128  69.528  23.970  8.302  1.661  1.015  
70%  0.116  16.193  18.801  78.087  12.122  7.415  1.769  1.050 
Mask Type  Images NO.  PSNR/SSIM  

MF  NNM  TNNM  DLMC  NCMC  LNOP  DMFCNet2  
Text Mask  1  30.33/0.936  32.37/0.950  32.52/0.952  31.64/0.942  32.42/0.953  32.65/0.953  37.13/0.985 
2  24.80/0.891  28.74/0.926  28.79/0.929  28.47/0.920  29.25/0.932  29.57/0.934  34.63/0.984  
3  30.27/0.930  31.97/0.947  32.49/0.956  32.27/0.948  32.75/0.958  32.57/0.955  35.17/0.985  
4  33.18/0.957  35.16/0.968  35.69/0.971  34.35/0.960  35.54/0.972  35.65/0.971  37.44/0.983  
5  34.30/0.949  37.54/0.975  38.31/0.975  37.96/0.974  38.70/0.979  38.45/0.977  40.82/0.990  
Average  30.58/0.933  33.16/0.953  33.56/0.957  32.94/0.949  33.73/0.959  33.78/0.958  37.04/0.985  
Grid Mask  1  29.19/0.899  32.95/0.942  32.96/0.944  33.22/0.928  32.62/0.943  33.20/0.943  37.11/0.983 
2  23.22/0.812  29.30/0.914  29.52/0.918  28.92/0.902  29.75/0.917  30.11/0.919  34.34/0.986  
3  28.41/0.882  33.17/0.946  33.57/0.951  32.44/0.940  33.41/0.954  33.89/0.951  37.67/0.986  
4  31.01/0.933  34.39/0.962  34.59/0.964  33.39/0.952  34.71/0.966  34.72/0.964  36.75/0.980  
5  33.14/0.918  37.45/0.966  37.88/0.967  36.46/0.958  37.78/0.972  38.01/0.968  41.16/0.988  
Average  28.99/0.889  33.45/0.946  33.70/0.949  32.89/0.936  33.65/0.950  33.99/0.949  37.41/0.985 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, Z.; Wang, H. Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting. Entropy 2022, 24, 1500. https://doi.org/10.3390/e24101500
Ma X, Li Z, Wang H. Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting. Entropy. 2022; 24(10):1500. https://doi.org/10.3390/e24101500
Chicago/Turabian StyleMa, Xiaoxuan, Zhiwen Li, and Hengyou Wang. 2022. "Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting" Entropy 24, no. 10: 1500. https://doi.org/10.3390/e24101500