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Abstract: This paper studies the matrix completion problems when the entries are contaminated
by non-Gaussian noise or outliers. The proposed approach employs a nonconvex loss function
induced by the maximum correntropy criterion. With the help of this loss function, we develop a rank
constrained, as well as a nuclear norm regularized model, which is resistant to non-Gaussian noise
and outliers. However, its non-convexity also leads to certain difficulties. To tackle this problem,
we use the simple iterative soft and hard thresholding strategies. We show that when extending
to the general affine rank minimization problems, under proper conditions, certain recoverability
results can be obtained for the proposed algorithms. Numerical experiments indicate the improved
performance of our proposed approach.
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linear convergence

1. Introduction

Arising from a variety of applications such as online recommendation systems [1,2],
image inpainting [3,4] and video denoising [5], the matrix completion problem has drawn tremendous
and continuous attention over recent years [6–12]. The matrix completion aims at recovering a low rank
matrix from partial observations of its entries [7]. The problem can be mathematically formulated as:

min
X∈Rm×n

rank(X) s.t. Xij = Bij, (i, j) ∈ Ω, (1)

where X, B ∈ Rm×n and Ω is an index set. Due to the nonconvexity of the rank function rank(·),
solving this minimization problem is NP-hard in general. To obtain a tractable convex relaxation,
the nuclear norm heuristic was proposed [7]. Incorporated with the least squares loss, the nuclear norm
regularization was proposed to solve (1) when the observed entries are contaminated by Gaussian
noise [13–16]. In real-world applications, datasets might be contaminated by non-Gaussian noise or
sparse gross errors, which can appear in both explanatory and response variables. However, it has
been well understood that the least squares loss cannot be resistant to non-Gaussian noise or outliers.

To address this problem, some efforts have been made in the literature. Ref. [17] proposed a robust
approach by using the least absolute deviation loss. Huber’s criterion was adopted in [18] to introduce
robustness into matrix completion. Ref. [19] proposed to use an Lp (0 < p ≤ 1) loss to enhance
the robustness. However, as explained later, the approaches mentioned above cannot be robust to
impulsive errors. In this study, we propose to use the correntropy-induced loss function in matrix
completion problems when pursuing robustness.
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Correntropy, which serves as a similarity measurement between two random variables,
was proposed in [20] within the information-theoretic learning framework developed in [21]. It is
shown that in prediction problems, error correntropy is closely related to the error entropy [21].
The correntropy and the induced error criterion have been drawing a great deal of attention in the
signal processing and machine learning community. Given two scalar random variables U, V, the
correntropy Vσ between U and V is defined as Vσ(U, V) = EKσ(U, V) with Kσ a Gaussian kernel
given by Kσ(u, v) = exp

{
−(u− v)2/σ2}, the scale parameter σ > 0 and (u, v) a realization of (U, V).

It is noticed in [20] that the correntropy Vσ(U, V) can induce a new metric between U and V.
In this study, by employing the correntropy-induced losses, we propose a nonconvex relaxation

approach to robust matrix completion. Specifically, we develop two models: one with a rank constraint
and the other with a nuclear norm regularization term. To solve them, we propose to use simple,
but efficient algorithms. Experiments on synthetic, as well as real data are implemented and show that
our methods are effective even for heavily-contaminated datasets. We make the following contributions
in this paper:

• In Section 3, we propose a nonconvex relaxation strategy for the robust matrix completion problem,
where the robustness benefits from using a robust loss. Based on this loss, a rank constraint, as well
as a nuclear norm penalized model is proposed. We also extend the proposed models to deal with
the affine rank minimization problem, which includes the matrix completion as a special case.

• In Section 4, we propose to use simple, but effective algorithms to solve the proposed models,
which are based on gradient descent and employ the hard/soft shrinkage operators. By verifying
the Lipschitz continuity, the convergence of the algorithms can be proven. When extended to
affine rank minimization problems, under proper conditions, certain recoverability results are
obtained. These results give understandings of this loss function in an algorithmic sense, which is
in accordance with and extends our previous work [22].

This paper is organized as follows: In Section 2, we review some existing (robust) matrix
completion approaches. In Section 3, we propose our nonconvex relaxation approach. Two algorithms
are proposed in Section 4 to solve the proposed models. Theoretical results will be presented in
Section 4.1. Experimental results are reported in Section 5. We end this paper in Section 6 with
concluding remarks.

2. Related Work and Discussions

In matrix completion, solving the optimization problem in Model (1) is NP-hard, and a usual
remedy is to consider the following nuclear norm convex relaxation:

min
X∈Rm×n

‖X‖∗ s.t. Xi,j = Bi,j, (i, j) ∈ Ω. (2)

Theoretically, it has been demonstrated in [7,8] that under proper assumptions, with
an overwhelming probability, one can reconstruct the original matrix. Situations of the matrix
completion with noisy entries have been also considered; see, e.g., [6,9]. In the noisy setting, the
corresponding observed matrix turns out to be:

BΩ = XΩ + E, (3)

where BΩ denotes the projection of B onto Ω, and E refers to the noise. The following two models are
frequently adopted to deal with the noisy case:

min
X∈Rm×n

1
2
‖XΩ − BΩ‖2

F s.t. rank(X) ≤ R,

and its convex relaxed and regularized heuristic:
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min
X∈Rm×n

1
2
‖XΩ − BΩ‖2

F + λ‖X‖∗,

where λ > 0 is a regularization parameter. Similar theoretical reconstruction results have been
also derived in the noiseless case under technical assumptions. Along this line, various approaches
have been proposed [14–16,23,24]. Among others, Refs. [10,25] interpreted the matrix completion
problem as a specific case of the trace regression problem endowed with an entry-wise least squares
loss, ‖ · ‖2

F. In the above-mentioned settings, the noise term E is usually assumed to be Gaussian or
sub-Gaussian to ensure the good generalization ability, which certainly excludes the heavily-tailed
noise and/or outliers.

Existing Robust Matrix Completion Approaches

It has been well understood that the least squares estimator cannot deal with non-Gaussian noise
or outliers. To alleviate this limitation, some efforts have been made.

In a seminal work, Ref. [17] proposed a robust matrix completion approach, in which the model
takes the following form:

min
X,E∈Rm×n

‖E‖1 + λ‖X‖∗ s.t. XΩ + E = BΩ. (4)

The above model can be further formulated as:

min
X∈Rm×n

‖XΩ − BΩ‖1 + λ‖X‖∗,

where λ > 0 is a regularization parameter. The robustness of the model (4) results from using the
least absolute deviation loss (LAD). This model was later applied to the column-wise robust matrix
completion problem in [26].

By further decomposing E into E = E1 + E2, where E1 refers to the noise and E2 stands for
the outliers, Ref. [18] proposed the following robust reconstruction model:

min
X,E2∈Rm×n

‖XΩ − BΩ − E2‖2
F + λ‖X‖∗ + γ‖E2‖1,

where λ, γ > 0 are regularization parameters. They further showed that the above estimator is
equivalent to the one obtained by using Huber’s criterion when evaluating the data-fitting risk.
We also note that [19] adopted an Lp (0 < p ≤ 1) loss to enhance the robustness.

3. The Proposed Approach

3.1. Our Proposed Nonconvex Relaxation Approach

As stated previously, matrix completion models based on the least squares loss cannot perform
well with non-Gaussian noise and/or outliers. Accordingly, robustness can be pursued by using
a robust loss as mentioned earlier. Associated with a nuclear norm penalization term, they are
essentially regularized M-estimator. However, note that the LAD loss and the Lp loss penalize the
small residuals strongly and hence cannot lead to accurate prediction for unobserved entries from the
trace regression viewpoint. Moreover, robust statistics reminds us that models based on the above three
mentioned loss functions cannot be robust to impulsive errors [27,28]. These limitations encourage
us to employ more robust surrogate loss functions to address this problem. In this paper, we present
a nonconvex relaxation approach to deal with the matrix completion problem with entries heavily
contaminated by noise and/or outliers.
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In our study, we propose the robust matrix completion model based on a robust and nonconvex
loss, which is defined by:

ρσ(t) = σ2(1− exp(−t2/σ2)),

with σ > 0 a scale parameter. To give an intuitive impression, plots of loss functions mentioned
above are given in Figure 1. As mentioned above, this loss function is induced by the correntropy,
which measures the similarity between two random variables [20,21] and has found many successful
applications [29–31]. Recently, it was shown in [22] that regression with the correntropy-induced
losses regresses towards the conditional mean function with a diverging scale parameter σ when the
sample size goes to infinity. It was also shown in [32] that when the noise variable admits a unique
global mode, regression with the correntropy-induced losses regresses towards the conditional mode.
As argued in [22,32], learning with correntropy-induced losses can be resistant to non-Gaussian noise
and outliers, while ensuring good prediction accuracy simultaneously with properly chosen σ.

Associated with the ρσ loss, our rank-constraint robust matrix completion problem is
formulated as:

min
X∈Rm×n

`σ(X) s.t. rank(X) ≤ R, (5)

where the data-fitting risk `σ(X) is given by:

`σ(X) =
1
2 ∑

(i,j)∈Ω
ρσ

(
Xij − Bij

)
=

σ2

2 ∑
(i,j)∈Ω

(
1− exp

(
−(Xij − Bij)

2/σ2
))

.

The nuclear norm heuristic model takes the following form:

min
X∈Rm×n

`σ(X) + λ‖X‖∗, (6)

where λ > 0 is a regularization parameter.
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Figure 1. Different losses: least squares, absolute deviation loss (LAD), Huber’s loss and ρσ

(Welsch loss).

3.2. Affine Rank Minimization Problem

In this part, we will show that our robust matrix completion approach can be extended to deal
with the robust affine rank minimization problems.

It is known that the matrix completion problem (1) is a special case of the following affine rank
minimization problem:

min
X∈Rm×n

rank(X) s.t. A(X) = b, (7)

where b ∈ Rp is given, and A : Rm×n → Rp is a linear operator defined by:

A(·) :=
[
〈A1, ·〉, 〈A2, ·〉, . . . , 〈Ap, ·〉

]T
,

where Ai ∈ Rm×n for each i. Introduced and studied in [33], this problem has drawn much attention
in recent years [14–16,23]. Note that (7) can be reduced to the matrix completion problem (1) if
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we set p = |Ω| (the cardinality of Ω), and let A(i−1)n+j = ei(m)ej(n)T for each (i, j) ∈ Ω,
where ei(m), i = 1, . . . , m and ej(n), j = 1, . . . , n are the canonical basis vector of Rm and
Rn, respectively.

In fact, (5) and (6) can be naturally extended to handle cases with noise and outliers of (7).
Denote the risk as follows:

˜̀
σ(X) =

σ2

2

p

∑
i=1

(
1− exp

(
−
(〈

Ai, X
〉
− bi

)2
/σ2

))
.

The rank constrained model can be formulated as:

min
X∈Rm×n

˜̀
σ(X) s.t. rank(X) ≤ R, (8)

and the nuclear norm regularized heuristic takes the form:

min
X∈Rm×n

˜̀
σ(X) + λ‖X‖∗. (9)

Referring to computational considerations presented below, we will focus on the more general
optimization problems (8) and (9), which can be directly applied to (5) and (6).

4. Algorithms and Analysis

We consider using gradient descent-based algorithms to solve the proposed models. It is usually
admitted that gradient descent is not very efficient. However, in our experiments, we find that gradient
descent is still efficient, and comparable with some state-of-the-art methods. On the other hand,
we present recoverability and convergence rate results for gradient descent applied to the proposed
models. Such results and analysis may help us better understand the models and such a nonconvex
loss function from the algorithmic aspects.

We first consider gradient descent with hard thresholding for solving (8). The derivation is
standard. Denote SR := {X ∈ Rm×n | rank(X) ≤ R}. By the differentiability of `σ, when Y is
sufficiently close to X, `σ can be approximated by:

`σ(X) ≈ `σ(Y) + 〈∇`σ(Y), X−Y〉+ α

2
‖X−Y‖2

F.

Here, α > 0 is a parameter, and ∇`σ(Y), the gradient of `σ at Y, is equal to:

p

∑
i=1

exp
(
−(〈Ai, Y〉 − bi)

2/σ2
)
(〈Ai, Y〉 − bi)Ai. (10)

Now, the iterates can be generated as follows:

X(k+1) = arg min
X∈SR

`σ(X(k)) +
〈
∇`σ(X(k)), X− X(k)

〉
+

α

2
‖X− X(k)‖2

F (11)

= arg min
X∈SR

‖X−Y(k+1)‖2
F

with:

Y(k+1) = X(k) − α−1∇`σ(X(k)). (12)

We simply write (11) as X(k+1) = PSR(Y
(k+1)), where PSR denotes the hard thresholding operator,

i.e., the best rank-R approximation to Y(k+1). The algorithm is presented in Algorithm 1.
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Algorithm 1 Gradient descent iterative hard thresholding for (8).

Input: linear operator A : Rm×n → Rp, initial guess X(0) ∈ Rm×n, prescribed rank R ≥ 1, σ > 0
Output: the recovered matrix X(k+1)

while a certain stopping criterion is not satisfied do
1: Choose a fixed step-size α−1 > 0.
2: Compute the gradient descent step (12)

Y(k+1) = X(k) − α−1∇`σ(X(k)).
3: Perform the hard thresholding operator to obtain

X(k+1) = PSR

(
Y(k+1)

)
,

and set k := k + 1.
end while

The algorithm starts from an initial guess X(0) and continues until some stopping criterion is
satisfied, e.g., ‖X(k+1)−X(k)‖F ≤ ε, where ε is a certain given positive number. Indeed, such a stopping
criterion makes sense, as Proposition A3 shows that ‖X(k) − X(k+1)‖F → 0. To ensure the convergence,
the step-size should satisfy α > L := ‖A‖2

2, where ‖A‖2 denotes the spectral norm of A. For matrix
completion, the spectral norm is smaller than one, and thus, we can set α > 1. In Appendix A, we have
shown the Lipschitz continuity of ∇`σ(·), which is necessary for the convergence of the algorithm.
α can also be self-adaptive by using a certain line-search rule. Algorithm 2 is the line-search version of
Algorithm 1.

Algorithm 2 Line-search version of Algorithm 1.

Input: linear operator A : Rm×n → Rp, initial guess X(0) ∈ Rm×n, prescribed rank R ≥ 1, σ > 0,
α(0) > 0, δ ∈ (0, 1), η > 1
Output: the recovered matrix X(k+1)

while a certain stopping criterion is not satisfied do
1: α(k+1) = α(k)

repeat
2: X(k+1) = PSR

(
X(k) − 1

α(k+1)∇`σ(X(k))
)

3: α(k+1) := α(k+1)η

until `σ(X(k+1)) ≤ `σ(X(k))− δα(k+1)

2 ‖X(k+1) − X(k)‖2
F

4: α(k+1) := α(k+1)/η,
and set k := k + 1.

end while

Solving (9) is similar, with only the hard thresholding PR replaced by the soft thresholding Sτ,
which can be derived as follows. Denote Y(k+1) = Udiag ({σi}1≤i≤r)VT as the SVD of Y(k+1). Then, Sλ/α

is the matrix soft thresholding operator [13,16] defined as Sλ/α(Y(k+1)) = Udiag (max{σi − λ/α, 0})VT .
Gradient descent-based soft thresholding is summarized in Algorithm 3.

Algorithm 3 Gradient descent iterative soft thresholding for (9).

Input: linear operator A : Rm×n → Rp, initial guess X(0) ∈ Rm×n, parameter λ > 0, σ > 0
Output: the recovered matrix X(k+1)

while a certain stopping criterion is not satisfied do
1: Choose a fixed step-size α−1 > 0, or choose it via the line-search rule.
2: Compute

Y(k+1) = X(k) − α−1∇`σ(X(k)).
3: Perform the soft thresholding operator to obtain

X(k+1) = Sλ/α(Y(k+1)),
and set k := k + 1.

end while
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4.1. Convergence

With the Lipschitz continuity of ∇`σ presented in Appendix A, it is a standard routine to show
the convergence of Algorithms 1 and 3, i.e., let {X(k)} be a sequence generated by Algorithm 1 or 3.
Then, every limit point of the sequence is a critical point of the problem. In fact, the results can be
enhanced to the statement that “the entire sequence converges to a critical point”, namely one can
prove that limk→∞ X(k) = X∗ where X∗ is a critical point. This can be achieved by verifying the
so-called Kurdyka–Łojasiewicz (KL) property [34] of the problems (8) and (9). As this is not the main
concern of this paper, we omit the verification here.

4.2. Recoverability and Linear Convergence Rate

For affine rank minimization problems, the convergence rate results have been obtained in the
literature; see, e.g., [23,24]. However, all the existing results are obtained for algorithms that solve the
optimization problems incorporating the least squares loss. In this part, we are concerned with the
recoverability and convergence rate of Algorithm 1. These results give the understanding of this loss
function from the algorithmic aspect, which is in accordance with and extends our previous work [22].

It has been known that the convergence rate analysis requires the matrix RIPcondition [33]. In our
context, instead of using the matrix RIP, we adopt the concept of the matrix scalable restricted isometry
property (SRIP) [24].

Definition 1 (SRIP [24]). For any X ∈ Sr, there exist constants νr, µr > 0 such that:

νr‖X‖F ≤ ‖A(X)‖F ≤ µr‖X‖F.

Due to the scalability of νr, µr on the operator A, SRIP is a generalization of the RIP [33] as
commented in [24]. We point out that the results of Algorithm 1 for the affine rank minimization
problem (8) rely on the SRIP condition. However, in the matrix completion problem (5), this condition
cannot be met, since νr in this case is zero. Consequently, the results provided below cannot be applied
directly to the matrix completion problem (5). However, similar results might be established for (5),
if some refined RIP conditions are assumed to hold for the operator A in the situation of matrix
completion [23]. To obtain the convergence rate results, besides the SRIP condition, we also need to
make some assumptions.

Assumption 1.

1. At the (k + 1)-th iteration of Algorithm 1, the parameter σk+1 in the loss function `σ is chosen as:

σk+1 = max

{
‖A(X(k))− b‖F√

2(1− β)
, σ̂

}
,

where β ∈ [0.988, 1), and σ̂ is a positive constant.
2. The spectral norm of A is upper bounded as ‖A‖2

2 ≤
6
5 ν2

2R.

Based on Assumption 1, the following results for Algorithm 1 can be derived.

Theorem 1. Assume that A(X∗) + ε = b, where X∗ is the matrix to be recovered and rank(X∗) = R.
Assume that Assumption 1 holds. Let {X(k)} be generated by Algorithm 1, with the step-size α = ‖A‖2

2. Then

1. at iteration (k + 1), Algorithm 1 will recover a matrix Xk+1 satisfying:

‖X(k+1) − X∗‖F ≤ qk+1
1 ‖X(0) − X∗‖F +

2
1− q1

‖ε‖F
‖A‖2

,

where q1 ∈ (0.8165, 0.9082) depending on β.
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2. If there is no noise or outliers, i.e., A(X∗) = b, then the algorithm converges linearly in the least squares
and `σ sense, respectively, i.e.,

‖A(X(k+1))− b‖2 ≤ q2‖A(X(k))− b‖2, and
˜̀

σk+1(X(k+1)) ≤ q3 ˜̀
σk (X(k)),

where q2 ∈ (0.8, 0.9898) and q3 ∈ (0.2, 0.262), depending on the choice of β.

The proof of Theorem 1 relies on the following lemmas, which reveal certain properties of the loss
function ˜̀

σ.

Lemma 1. For any σ > 0 and t ∈ R, it holds:

σ2

2

(
1− exp

(
−t2

σ2

))
≤ t2

2
.

Proof. For any σ > 0, let f (t) := t2

2 −
σ2

2 (1− exp(−t2

σ2 )). Since f (t) is even, we need to only consider

t ≥ 0. Note that f
′
(t) = t − t exp(−t2

σ2 ), which is nonnegative when t ≥ 0. Therefore, f (t) is
a nondecreasing function on [0,+∞). On the other hand, f

′
(0) = 0 and f (t) = 0. Thus, the minimum

of f (t) is f (0) = 0. As a result, f (t) ≥ 0. This completes the proof.

Lemma 2. Assuming that β ∈ [0, 1), and 0 < δ ≤ 2(1− β), it holds:

g(δ) := 1− exp(−δ)− βδ ≥ 0.

Proof. Since δ > 0, it is not hard to check that 1− exp(−δ) ≥ δ− 1
2 δ2. From the range of δ, it follows

δ− 1
2 δ2 ≥ βδ. This completes the proof.

Lemma 3. Given a fixed t ∈ R, for σ > 0, h(σ) := σ2(1− exp(−t2/σ2)) is nondecreasing with respect to σ.

Proof. It is not hard to check that h′ is nonnegative on σ > 0.

Proof of Theorem 1. By the fact that X∗ is rank-R and X(k+1) is the best rank-R approximation to
Y(k+1), we have:

‖X(k+1) − X∗‖F

≤ ‖X(k+1) −Y(k+1)‖F + ‖Y(k+1) − X∗‖F

≤ 2‖Y(k+1) − X∗‖F

= 2‖X(k) − X∗ − 1
α
∇`σk+1(X(k))‖F.

Since:

vec
(
∇`σk+1(X(k))

)
= ATΛ

(
Avec(X(k))− b

)
= ATΛ

(
Avec(X(k) − X∗)− ε

)
,
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we know that: ∥∥∥∥X(k) − X∗ − 1
α
∇`σk+1(X(k))

∥∥∥∥
F

=

∥∥∥∥vec(X(k) − X∗)− 1
α

ATΛ
(

Avec(X(k) − X∗)− ε
)∥∥∥∥

F

≤
∥∥∥∥vec(X(k) − X∗)− 1

α
ATΛAvec(X(k) − X∗)

∥∥∥∥
F

+
1
α

∥∥∥ATΛε
∥∥∥

F

≤
∥∥∥∥vec(X(k) − X∗)− 1

α
ATΛAvec(X(k) − X∗)

∥∥∥∥
F

+
‖ε‖F
‖A‖2

,

where the last inequality follows from:

‖ATΛε‖F ≤ ‖A‖2‖Λ‖2‖ε‖F ≤ ‖A‖2‖ε‖F

and the choice of the step-size α. It remains to estimate ‖vec(X(k) − X∗)− 1
α ATΛAvec(X(k) − X∗)‖F.

We first see that: ∥∥∥∥vec(X(k) − X∗)− 1
α

ATΛAvec(X(k) − X∗)
∥∥∥∥2

F

= − 2
α

〈
vec(X(k) − X∗), ATΛAvec(X(k) − X∗)

〉
(13)

+
1
α2

∥∥∥ATΛAvec(X(k) − X∗)
∥∥∥2

F
+
∥∥∥X(k) − X∗

∥∥∥2

F

To verify our first assertion, it remains to bound the first two terms by means of ‖X(k) − X∗‖2
F.

We consider the first term. Denoting yk
i = 〈Ai, X(k) − X∗〉, we know that:〈

vec(X(k) − X∗), ATΛAvec(X(k) − X∗)
〉

=
〈

Avec(X(k) − X∗), ΛAvec(X(k) − X∗)
〉

=
p

∑
i=1

exp

−( 〈Ai, X(k)〉 − bi

σk+1

)2
(yk

i

)2
.

The choice of σk+1 tells us that:

exp

−( 〈Ai, X(k)〉 − bi

σk+1

)2
 ≥ exp (−2(1− β)) ,

and consequently:

− 2
α

〈
vec(X(k) − X∗), ATΛAvec(X(k) − X∗)

〉
≤ − 2

α
exp (−2(1− β)) ‖Avec(X(k) − X∗)‖2

F.
(14)
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Then, by the fact that ‖Λ‖2
2 ≤ 1 and the choice of the step-size α, we observe that the second term

of (13) can be upper bounded by:

1
α2 ‖ATΛAvec(X(k) − X∗)‖2

F ≤
1
α
‖Avec(X(k) − X∗)‖2

F. (15)

Combining (14) and (15) and denoting γ = 1 − 2 exp (−2(1− β)), we come to the
following conclusion: ∥∥∥∥vec(X(k) − X∗)− 1

α
ATΛAvec(X(k) − X∗)

∥∥∥∥2

F

≤
∥∥∥X(k) − X∗

∥∥∥2

F
+

γ

α

∥∥∥Avec(X(k) − X∗)
∥∥∥2

F

≤
∥∥∥X(k) − X∗

∥∥∥2

F
+

γν2
2R

α

∥∥∥X(k) − X∗
∥∥∥2

F
,

where the last inequality follows from the SRIP condition and the fact that γ < 0 by the range of β.
As a result, we get the following estimation:

‖X(k+1) − X∗‖F ≤ 2‖X(k) − X∗ − 1
α
∇`σk+1(X(k))‖F

≤ 2

√
1 +

γν2
2R

α
‖X(k) − X∗‖F + 2

‖ε‖F
‖A‖2

(16)

≤ 2

√
1 +

5γ

6
‖X(k) − X∗‖F + 2

‖ε‖F
‖A‖2

where the last inequality follows from the assumption α = ‖A‖2
2 ≤ 6/5ν2

2R. Denote q1 = 2
√

1 + 5γ
6 .

The range of β tells us that q1 ∈ (0.8165, 0.9082). Iterating (16), we obtain:

‖X(k+1) − X∗‖F ≤ qk+1
1 ‖X(0) − X∗‖F +

2
1− q1

‖ε‖F
‖A‖2

.

Therefore, The first assertion concerning the recoverability is proven.
Suppose there is no noise or outliers, i.e., we haveA(X∗) = b. In this case, it follows from (16) that:

‖X(k+1) − X∗‖F ≤ q1‖X(k) − X∗‖F,

and then, the SRIP condition tells us that:

‖A(Xk)− b‖2
F ≤ µ2

2R‖Xk+1 − X∗‖2
F

≤ µ2
2Rq2

1‖X(k) − X∗‖2
F

≤
(

µ2R
ν2R

)2
q2

1‖A(Xk)− b‖2
F

≤ 6
5

q2
1‖A(Xk)− b‖2

F,

where the last inequality comes from the inequality chain µ2
2R ≤ ‖A‖2

2 ≤ 6/5ν2
2R. Denote q2 = 6q2

1/5.
Then, q2 ∈ (0.8, 0.9898). Therefore, the algorithm converges linearly to X∗ in the least squares sense.
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We now proceed to show the linear convergence in the ˜̀
σ sense. Following from the inequality

‖X(k+1) −Y(k+1)‖2
F ≤ ‖X∗ −Y(k+1)‖2

F, we obtain:

α

2
‖X(k+1) − X(k)‖2

F

+
〈
∇`σk+1(X(k)), X(k+1) − X(k)

〉
≤ α

2
‖X(k) − X∗‖2

F +
〈
∇`σk+1(X(k)), X∗ − X(k)

〉
.

Combining with Inequality (A1), we see that ˜̀
σk+1(X(k+1)) can be upper bounded by:

˜̀
σk+1(X(k)) +

α

2
‖X(k) − X∗‖2

F +
〈
∇ ˜̀

σk+1(X(k)), X∗ − X(k)
〉

. (17)

We need to upper bound
〈
∇ ˜̀

σk+1(X(k)), X∗ − X(k)
〉

and α
2‖X(k) − X∗‖2

F in terms of ˜̀
σk+1(X(k)).

We first consider the second term. Under the SRIP condition, we have:

‖X(k) − X∗‖2
F ≤ 1

ν2
2R
‖A(X(k) − X∗)‖2

F

=
1

ν2
2R
‖A(X(k))− b‖2

F.

By setting δ =

(
yk

i
σk+1

)2
, we get δ ≤ 2(1− β). Lemma 2 tells us that:

β(yk
i )

2 ≤ (σk+1)2
(

1− exp
(
−(yk

i /σk+1)2
))

.

Summing the above inequalities over i from 1 to p, we have:

β‖A(X(k))− b‖2
F

≤ (σk+1)2
p

∑
i=1

(
1− exp

(
−(yk

i /σk+1)2
))

= 2˜̀
σk+1(X(k)).

Therefore, α
2‖X(k) − X∗‖2

F can be bounded as follows:

α
2‖X(k) − X∗‖2

F ≤ α
2ν2

2R
‖A(X(k) − X∗)‖2

≤ α
βν2

2R

˜̀
σk+1(X(k)).

(18)

We proceed to bound
〈
∇ ˜̀

σk+1(X(k)), X∗ − X(k)
〉

. It follows from (14) and Lemma 1 that:

〈
∇ ˜̀

σk+1(X(k)), X∗ − X(k)
〉

≤ − exp(−2(1− β))‖A(X(k))− b‖2

≤ −2 exp(−2(1− β)) ˜̀
σk+1(X(k)).

(19)

Combining (17)–(19) together, we get:
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˜̀
σk+1(X(k+1))

≤
(

1 +
α

βν2
2R
− 2 exp(−2(1− β))

)
˜̀

σk+1(X(k))

≤
(

1 +
6

5β
− 2 exp(−2(1− β))

)
˜̀

σk+1(X(k)),

where the last inequality follows from α ≤ 6
5 ν2

2R.
By Lemma 3, the function σ2(1− exp(−t2/σ2)) is nondecreasing with respect to σ > 0. This in

connection with the fact that:

σk+1 = max

{
‖A(X(k))− b‖F√

2(1− β)
, σ

}

≤ σk = max

{
‖A(X(k−1))− b‖F√

2(1− β)
, σ

}

yields ˜̀
σk+1(X(k)) ≤ ˜̀

σk (X(k)). Let q3 = 1 + 6
5β − 2 exp (−2(1− β)), and consequently,

q3 ∈ (0.2, 0.2620). We thus have:

˜̀
σk+1(X(k+1)) ≤ q3 ˜̀

σk+1(X(k)) ≤ q3 ˜̀
σk (X(k)).

The proof is now completed.

The above results show that it is possible that Algorithm 1 will find X ∗ if the magnitude of the
noise is not too large. Moreover, the results also imply that the algorithm is safe when there is no noise.

5. Numerical Experiments

This section presents numerical experiments to illustrate the effectiveness of our methods.
Empirical comparisons with other methods are implemented on synthetic and real data contaminated
by outliers or non-Gaussian noise.

The following 4 algorithms are implemented. RMC-`σ-IHTand RMC-`σ-ISTare denoted as
Algorithms 1 and 3 incorporated with the line-search rule, respectively. The approach proposed
in [16] is denoted as MC-`2-IST, which is an iterative soft thresholding algorithm based on the least
squares loss. The robust approach based on the LAD loss proposed in [17] is denoted by RMC-`1-ADM.
Empirically, the σ value of `σ is set to be 0.5; the tuned parameter λ of RMC-`σ-IST and MC-`2-IST
is set to λ = min{m,n}

10
√

max{m,n}
, while for RMC-`1-ADM, λ = 1/

√
max{m, n}, as suggested in [17]. All the

numerical computations are conducted on an Intel i7-3770 CPU desktop computer with 16 GB of RAM.
The supporting software is MATLAB R2013a. Some notations used frequently in this section are
introduced first in Table 1. Bold number in the tables of this section means that it is the best among
the competitors.

Table 1. Notations used in the experiments.

Notations Descriptions

ρr the ratio of the rank to the dimensionality of a matrix
ρo the ratio of outliers to the number of entries of a matrix
ρm the level of missing entries
sn the factor of scale of noise
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5.1. Evaluation on Synthetic Data

The synthetic datasets are generated in the following way:

1. Generating a low rank matrix: We first generate an m × n matrix with i.i.d. Gaussian entries
∼N(0,1), where m = n = 1000. Then, a bρrmc-rank matrix M is obtained from the above matrix
by rank truncation, where ρr varies from 0.04–0.4.

2. Adding outliers: We create a zero matrix E ∈ Rm×n and uniformly randomly sample ρom2 entries,
where ρo varies from 0–0.6. These entries are randomly drawn from the chi-square distribution,
with four degrees of freedom. Multiplied by 10, the matrix E is used as the sparse error matrix.

3. Missing entries: ρmm2 of the entries are randomly missing, with ρm varying between
{0, 10%, 20%, 30%}. Finally, the observed matrix is denoted as B = PΩ(M + E).

RMC-`σ-IHT (Algorithm 1), RMC-`σ-IST (Algorithm 3) and RMC-`1-ADM [17] are implemented
respectively on the matrix completion problem with the datasets generated above. For these three
algorithms, the same initial guess with the all-zero matrix X0 = 0 is applied. The stopping criterion is
‖X(k+1) − X(k)‖F ≤ 10−3, or restrictions on the number of iterations, which is set to be 500. For each
tuple (ρm, ρr, ρo), we repeat 10 runs. The algorithm is regarded as successful if the relative error of the
result X̂ satisfies ‖X̂−M‖F/‖M‖F ≤ 10−1.

Experimental results of RMC-`σ-IHT (top), RMC-`σ-IST (middle) and RMC-`1-ADM (bottom) are
reported in Figure 2, which are given in terms of phase transition diagrams. In Figure 2, the white
zones denote perfect recovery in all the experiments, while the black ones denote failure for all the
experiments. In each diagram, the x-axis represents the ratio of rank, i.e., we let ρr =

rank
m ∈ [0.04, 0.4],

and the y-axis represents the level of outliers, i.e., we let ρo =
]outliers

m2 ∈ [0, 0.6]. The level of missing
entries ρm varies from left to right in each row. As shown in Figure 2, our approach outperforms
RMC-`1-ADM when ρo and ρr increase. We also observe that RMC-`σ-IHT performs better than
RMC-`σ-IST when the level of outliers increases, while RMC-`σ-IST outperforms RMC-`σ-IHT when
the ratio of missing entries increases.

Comparison of the computational time and the relative error are also reported in Table 2. In this
experiment, the level of missing entries ρm = {20%, 30%}, the ratio of rank ρr = 0.1 and the level of
outliers ρo varies between {0.1, 0.15, 0.2, 0.25, 0.3}. For each ρo, we randomly generate 20 instances
and then average the results. In the table, “time” denotes the CPU time, with the unit being second,
and “rel.err” represents the relative error introduced in the previous paragraph. The results also
demonstrate the improved performance of our methods in most of the cases on CPU time and relative
error, especially for RMC-`σ-IHT.

5.2. Image Inpainting and Denoising

One typical application of matrix completion is the image inpainting problem [4]. The datasets
and the experiment are conducted as follows:

1. We first choose five gray images, named “Baboon”, “Camera Man”, “Lake”, “Lena” and “Pepper”
(the size of each image is 512× 512), each of which is stored in a matrix M.

2. The outliers matrix E is added to each M, where E is generated in the same way as the previous
experiment, and the level of outliers ρo varies among {0.3, 0.4, 0.5, 0.6, 0.7}.

3. The ratio of the missing entries is set to 30%. RMC-`σ-IST, RMC-`1-ADM and MC-`2-IST, are tested
in this experiment. In addition, we also test the Cauchy loss-based model minX `c(X) + λ‖X‖∗,
which is denoted as RMC-`c-IST, where:

`c :=
c2

2 ∑
(i,j)∈Ω

ln
(

1 +
(
Xij − Bij

)2 /c2
)

,

where c > 0 is a parameter controlling the robustness. Empirically, we set c = 0.15.
Other parameters are set to the same as those of RMC-`σ-IST. The above model is also solved
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by soft thresholding similar to Algorithm 3. Note that Cauchy loss has a similar shape as that
of Welsch loss and also enjoys the redescending property; such a loss function is also frequently
used in the robust statistics literature. The initial guess is X0 = 0. The stopping criterion is
‖X(k+1) − X(k)‖F ≤ 10−2, or the iterations exceed 500.

Detailed comparison results in terms of the relative error and CPU time are listed in Table 3,
from which one can see the efficiency of our method. Indeed, experimental results show that our
method can be terminated within 80 iterations. According to the relative error in Table 3, our method
performs the best in almost all cases, followed by RMC-`c-IST. This is not surprising because the
Cauchy loss-based model enjoys similar properties as the proposed model. We also observe that
the RMC-`1-ADM algorithm cannot deal with situations when images are heavily contaminated by
outliers. This illustrates the robustness of our method.

Table 2. Comparison of RMC-`σ-IHT(Algorithm 1), RMC-`σ-IST(Algorithm 3) and RMC-`1-ADM [17]
on CPU time and the relative error on synthetic data. ρm = 0.3, ρr = 0.1. rel.err, relative error.

RMC-`σ-IHT RMC-`σ-IST RMC-`1-ADM
Algorithm 1 Algorithm 3 [17]ρm ρo

Time rel.err Time rel.err Time rel.err

0.1 15.43 3.80 ×10−03 20.53 4.55×10−02 19.24 2.58×10−06

0.15 15.31 4.40×10−03 21.26 4.96×10−02 18.32 2.33×10−06

0.2 16.93 5.40×10−03 22.95 5.53×10−02 48.97 2.82×10−04

0.25 19.04 5.80×10−03 26.41 6.23×10−02 243.80 1.07×10−01

0.3 27.10 7.00×10−03 29.47 7.01×10−02 137.99 3.16×10−01

0.2 0.35 26.35 8.00×10−03 36.03 8.10×10−02 99.26 4.86×10−01

0.4 23.91 1.03×10−02 37.41 9.41×10−02 79.85 6.38×10−01

0.45 29.64 1.24×10−02 45.68 1.10×10−01 67.45 7.77×10−01

0.5 40.41 1.69×10−02 61.39 1.37×10−01 60.08 9.52×10−01

0.55 60.28 2.45×10−02 103.87 1.80×10−01 68.52 1.39×10+00

0.6 102.19 3.69×10−02 154.04 2.65×10−01 144.37 2.86×10+00

0.1 16.38 5.20×10−03 24.14 5.66×10−02 24.81 2.86×10−06

0.15 20.14 5.00×10−03 23.85 6.41×10−02 110.67 8.30×10−03

0.2 22.83 6.00×10−03 25.92 7.00×10−02 117.91 1.15×10−01

0.25 20.71 7.00×10−03 28.93 7.97×10−02 118.10 3.08×10−01

0.3 20.77 8.80×10−03 32.99 9.21×10−02 89.56 4.68×10−01

0.3 0.35 21.28 8.20×10−03 33.72 9.09×10−02 88.73 4.66×10−01

0.4 27.64 1.15×10−02 41.53 1.05×10−01 75.07 5.98×10−01

0.45 32.38 1.40×10−02 48.45 1.23×10−01 71.14 7.13×10−01

0.5 44.53 1.68×10−02 84.67 1.50×10−01 73.63 8.02×10−01

0.55 62.23 2.26×10−02 125.48 1.95×10−01 78.34 8.84×10−01

0.6 92.14 3.26×10−02 241.35 2.78×10−01 74.09 1.07×10+00

To better illustrate the robustness of our method empirically, we also attach images recovered by
the three methods in Figure 3. For the sake of saving space, we merely list the recovery results for the
case ρo = 0.6 with 30% missing entries. In Figure 3, the first column represents five original images,
namely, “Baboon”, “Camera Man”, “Lake”, “Lena” and “Pepper”. Images in the second column are
contaminated images with 60% outliers and 30% missing entries. Recovered results of each image are
report in the remaining columns respectively by using RMC-`σ-IST, RMC-`1-ADM, MC-`2-IST and
RMC-`c-IST. One can observe that the images recovered by our method retain most of the important
information, followed by RMC-`c-IST.
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Figure 2. Phase transition diagrams of RMC-`σ-IHT (Algorithm 1), RMC-`σ-IST (Algorithm 3)
and RMC-`1-ADM [17]. The first row: RMC-`σ-IHT; the second row: RMC-`σ-IST; the last row:
RMC-`1-ADM. x-axis: ρr ∈ [0.04, 0.4]; y-axis: ρo ∈ [0, 0.6]. From the first column to the last column,
ρm varies from 0–30%.

Our next experiment is designed to show the effectiveness of our method in dealing with the
non-Gaussian noise. We assume that the entries of the noise matrix E are i.i.d drawn from Student’s
t distribution, with three degrees of freedom. We then scale E by a factor sn, and we denote the
corresponding E := sn · E. The noise scale factor sn varies in {0.01, 0.05, 0.1}, and ρm varies in
{0.1, 0.3, 0.5}. The results are shown in Table 4, where the image “Building” is used. We list the
recovered images in Figure 4 with the case sn = 0.05. From the table and the recovered images, we can
see that our method also performs well when the image is only contaminated by non-Gaussian noise.
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Table 3. Experimental results of RMC-`σ-IST (Algorithm 3), RMC-`1-ADM [17] and MC-`2-IST [16] on different images with ρr = 0.1, ρm = 0.3 and ρo varying
from 0.3 to 0.7.

Images Baboon Camera Man Lake Lena Pepperρo
Method Time rel.err Time rel.err Time rel.err Time rel.err Time rel.err

RMC-`σ-IST (Algorithm 3) 3.17 1.46×10−02 3.55 1.74×10−02 3.79 1.61×10−02 4.36 2.05×10−02 3.80 1.10×10−02

0.3 RMC-`1-ADM [17] 32.22 2.86×10−02 35.87 4.36×10−02 26.74 4.57×10−02 20.67 3.98×10−02 33.08 2.46×10−02

MC-`2-IST [16] 68.33 4.35×10+00 72.44 4.44×10+00 68.39 4.14×10+00 68.68 4.22×10+00 68.38 3.07×10+00

RMC-`c-IST 5.19 1.38×10−02 5.60 1.83×10−02 5.24 1.70×10−02 4.73 2.46×10−02 4.36 1.61×10−02

RMC-`σ-IST (Algorithm 3) 3.76 1.73×10−02 3.94 2.15×10−02 4.69 1.96×10−02 4.58 2.41×10−02 4.91 1.42×10−02

0.4 RMC-`1-ADM [17] 30.93 3.51×10−02 36.76 5.16×10−02 26.67 5.48×10−02 22.41 4.76×10−02 32.18 3.28×10−02

MC-`2-IST [16] 68.51 5.07×10+00 68.94 5.08×10+00 68.09 4.74×10+00 68.84 4.88×10+00 68.68 3.54×10+00

RMC-`c-IST 4.88 1.70×10−02 5.73 2.37×10−02 5.34 2.21×10−02 5.39 2.89×10−02 5.56 1.87×10−02

RMC-`σ-IST (Algorithm 3) 4.01 2.13×10−02 4.44 2.61×10−02 5.29 2.40×10−02 5.27 2.76×10−02 6.77 1.63×10−02

0.5 RMC-`1-ADM [17] 24.95 4.91×10−02 27.69 6.57×10−02 22.75 6.92×10−02 20.74 6.71×10−02 26.86 3.98×10−02

MC-`2-IST [16] 68.30 5.56×10+00 69.64 5.62×10+00 68.71 5.37×10+00 68.56 5.44×10+00 68.71 3.91×10+00

RMC-`c-IST 6.63 2.18×10−02 6.94 2.95×10−02 5.84 2.90×10−02 6.10 3.32×10−02 6.94 2.15×10−02

RMC-`σ-IST (Algorithm 3) 4.98 2.65×10−02 6.36 3.37×10−02 7.96 3.11×10−02 5.75 3.49×10−02 9.52 2.20×10−02

0.6 RMC-`1-ADM [17] 15.55 1.41×10−01 15.21 1.61×10−01 15.23 1.48×10−01 15.56 1.38×10−01 15.95 9.71×10−02

MC-`2-IST [16] 68.22 6.06×10+00 69.93 6.17×10+00 68.73 5.77×10+00 68.34 5.88×10+00 68.51 4.23×10+00

RMC-`c-IST 7.93 2.70×10−02 6.08 4.51×10−02 8.19 3.22×10−02 7.87 3.81×10−02 10.36 2.85×10−02

RMC-`σ-IST (Algorithm 3) 8.74 3.59×10−02 11.37 4.41×10−02 11.75 4.21×10−02 9.59 4.16×10−02 19.95 2.69×10−02

0.7 RMC-`1-ADM [17] 44.31 1.90×10+00 44.63 1.96×10+00 45.16 1.81×10+00 43.49 1.85×10+00 43.88 1.37×10+00

MC-`2-IST [16] 68.54 6.52×10+00 68.75 6.59×10+00 69.06 6.18×10+00 68.41 6.22×10+00 68.62 4.52×10+00

RMC-`c-IST 13.12 3.59×10−02 23.03 5.03×10−02 15.19 4.36×10−02 22.95 4.68×10−02 14.78 3.86×10−02
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Figure 3. Comparison of RMC-`σ-IST, RMC-`1-ADM and MC-`2-IST on different images with
60% outliers and 30% missing entries. (a) The original low rank images; (b) images with 30%
missing entries and contaminated by 70% outliers; (c) images recovered by RMC-`σ-IST (Algorithm 3);
(d) images recovered by RMC-`1-ADM [17]; (e) images recovered by MC-`2-IST [16]; (f) images
recovered by RMC-`c-IST.

Figure 4. Recovery results of RMC-`σ-IST (third), RMC-`1-ADM (fourth) and MC-`2-IST (fifth) on the
image “Building” contaminated by non-Gaussian noise with sn = 0.05 and 30% missing entries.
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Table 4. Experimental results on the image “Building”, contaminated by non-Gaussian noise with
varying ρm and the noise scale.

RMC-`σ-IST RMC-`1-ADM MC-`2-IST
Algorithm 3 [17] [16]sn ρm

Time rel.err Time rel.err Time rel.err

0.1 0.91 6.70×10−03 2.57 1.76×10−02 0.59 6.70×10−03

0.01 0.3 0.90 9.60×10−03 2.40 2.32×10−02 0.85 9.60×10−03

0.5 1.05 1.44×10−02 2.77 3.24×10−02 1.29 1.44×10−02

0.1 1.24 1.58×10−02 1.17 2.16×10−02 0.82 1.91×10−02

0.05 0.3 1.11 2.03×10−02 1.37 2.70×10−02 1.64 3.63×10−02

0.5 1.32 2.49×10−02 2.22 3.61×10−02 1.94 2.88×10−02

0.1 2.34 3.31×10−02 1.08 3.04×10−02 1.35 5.72×10−02

0.1 0.3 3.30 3.40×10−02 1.44 3.78×10−02 2.32 4.28×10−02

0.5 3.70 4.66×10−02 2.42 5.53×10−02 3.98 1.55×10−01

5.3. Background Subtraction

Background subtraction, also known as foreground detection, is one of the major tasks in computer
vision, which aims at detecting changes in image or video sequences and finds application in video
surveillance, human motion analysis and human-machine interaction from static cameras [35].

Given a sequence of images, one can cast them into a matrix B by vectorizing each image and
then stacking row by row. In many cases, it is reasonable to assume that the background varies little.
Consequently, the background forms a low rank matrix M, while the foreground activity is spatially
localized and can be seen as the error matrix E. Correspondingly, the image sequence matrix B can be
expressed as the sum of a low rank background matrix M and a sparse error matrix E, which represents
the activity in the scene.

In practice, it is reasonable to assume that some entries of the image sequence are missing and the
images are contaminated by noise or outliers. Therefore, the foreground object detection problem can
be formulated as a robust matrix completion problem. Ref. [36] proposed to use the LAD-loss-based
matrix completion approach to separate M and E. The data of this experiment were downloaded from
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

Our experiment in this scenario is implemented as follows:

1. We choose the sequence named “Restaurant” for our experiment, which consists of 3057 color
images. Each image of “Restaurant” is 160 × 120 in size. From the sequence, we pick
100 continuous images and convert them to gray images to form the original matrix B, which is
100× 19200 in size, where each row is a vector converted from an image.

2. Two types of non-Gaussian noise are added to B. The first type of noise is drawn from
the chi-square distribution, with four degree of freedom; the second type of noise is drawn
from Student’s t distribution, with three degrees of freedom. Then, the two types of noise
are simultaneously rescaled by sn = {0.01, 0.02, 0.05}. The last 50% of the entries are
missing randomly.

3. RMC-`σ-IHT and RMC-`1-ADM are used to deal with this problem. We set R = 1 in RMC-`σ-IHT.
The initial guess is the zero matrix. The stopping criterion is ‖X(k+1) − X(k)‖F ≤ 10−2, or the
iterations exceed 200.

The running time and relative error are reported in Table 5. From the table, we see that the
proposed approach is faster and gives smaller relative errors. To give an intuitive impression, we choose
five frames from each image sequence, as shown in Figure 5, from which we can observe that when
the image sequences are corrupted by noise (sn = 0.05) and missing entries, both of the methods can
successfully extract the background and foreground images, and it seems that our method performs
better because the details of the background images are recovered well, whereas the LAD-based

http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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approach does not seem to perform as well as ours where some details of the background are added to
the foreground. It can be also observed that none of the two methods can recover the missing entries
in the foreground. In order to achieve this, maybe more effective approaches are needed.

(e)

(d)

(b)

(c)

(a)

Figure 5. Comparison between RMC-`σ-IHT (Algorithm 1) and RMC-`1-ADM [17] on extracting the
image sequence “Restaurant” with ρm = 50% and contaminated by two types of non-Gaussian noise
with sn = 0.05. (a) The original image sequence; (b) the image sequence with missing entries and
contaminated by noise; (c) background extracted by RMC-`σ-IHT (Algorithm 1); (d) foreground
extracted by RMC-`σ-IHT (Algorithm 1); (e) background extracted by RMC-`1-ADM [17];
(f) foreground extracted by RMC-`1-ADM [17].

Table 5. Experiment results on “Restaurant” contaminated by non-Gaussian noise and 50% missing entries.

sn Method Time rel.err

0.01 RMC-`σ-IHT (Algorithm 1) 70.58 9.77×10−02

RMC-`1-ADM [17] 229.88 1.14×10−01

0.02 RMC-`σ-IHT (Algorithm 1) 58.51 9.78×10−02

RMC-`1-ADM [17] 230.24 1.30×10−01

0.05 RMC-`σ-IHT (Algorithm 1) 99.87 1.14×10−01

RMC-`1-ADM [17] 221.60 2.37×10−01

6. Concluding Remarks

The correntropy loss function has been studied in the literature [20,21] and has found many
successful applications [29–31]. Learning with correntropy-induced losses could be resistant to
non-Gaussian noise and outliers while ensuring good prediction accuracy simultaneously with
properly chosen parameter σ. This paper addressed the robust matrix completion problem based on
the correntropy loss. The proposed approach was shown to be efficient to deal with non-Gaussian
noise and sparse gross errors. The nonconvexity of the proposed approach was due to using the `σ loss.
Based on the above approach, we proposed two nonconvex optimization models and extend them to
the more general robust affine rank minimization problems. Two gradient-based iterative schemes
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to solve the nonconvex optimization problems were offered, with convergence rate results being
obtained under proper assumptions. It would be interesting to investigate similar convergence and
recoverability results for other redescending-type loss functions-based models. Numerical experiments
verified the improved performance of our methods, where empirically, the parameter σ for `σ is set
to 0.5 and λ for the nuclear norm model (6) is λ = min{m,n}

10
√

max{m,n}
.
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Appendix A. Lipschitz Continuity of the Gradient of `σ and Some Propositions

The propositions given in the Appendix hold for both `σ and ˜̀
σ. For simplicity, we only present

the formulas for ˜̀
σ. We first give some notations. Let vec(·) be the vectorization operator over any

matrix space Rs×t, with vec(B) ∈ Rst and:

vec(B)(i−1)t+j = Bij, 1 ≤ i ≤ s, 1 ≤ j ≤ t, ∀B ∈ Rs×t.

We further define matrix A ∈ Rp×mn, where:

AT =
[
vec

(
A1
)

, vec
(

A2
)

, . . . , vec (Ap)
]

.

Based on the above notations, the vectorized form of A(X) is written as:

vec(A(X)) = Avec(X),

and the gradient of `σ at X can be rewritten as:

vec (∇`σ(X)) = ATΛ (Avec(X)− b) ,

where Λ ∈ Rp×p is a diagonal matrix with:

Λii = exp
(
−(〈Ai, X〉 − bi)

2/σ2
)

, 1 ≤ i ≤ p.

Let ‖A‖2 be the spectral norm of A. The following proposition shows that the gradient of ˜̀
σ is

Lipschitz continuous.

Proposition A1. The gradient of ˜̀
σ is Lipschitz continuous. That is, for any X, Y ∈ Rm×n, it holds that:

‖∇ ˜̀
σ(X)−∇ ˜̀

σ(Y)‖F ≤ ‖A‖2
2‖X−Y‖F.

Proof. With notations introduced above, we know that:

‖∇ ˜̀
σ(X)−∇ ˜̀

σ(Y)‖F = ‖ATΛX (Avec(X)− b)− ATΛY (Avec(Y)− b) ‖F

≤ ‖A‖2‖ΛX (Avec(X)− b)−ΛY (Avec(Y)− b) ‖F,
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where ΛX and ΛY are the diagonal matrices corresponding to ∇ ˜̀
σ(X) and ∇ ˜̀

σ(Y). It remains to
show that:

‖ΛX (Avec(X)− b)−ΛY (Avec(Y)− b) ‖F ≤ ‖A‖2‖X−Y‖F.

By letting z1 = Avec(X)− b and z2 = Avec(Y)− b, we observe that:

‖ΛX (Avec(X)− b)−ΛY (Avec(Y)− b) ‖2
F

=
p

∑
i=1

(
exp

(
−z2

1,i/σ2
)

z1,i − exp
(
−z2

2,i/σ2
)

z2,i

)2
.

Combining with the fact that for any t1, t2 ∈ R and σ > 0,

| exp(−t2
1/σ2)t1 − exp(−t2

2/σ2)t2| ≤ |t1 − t2|,

we have:

‖ΛX (Avec(X)− b)−ΛY (Avec(Y)− b) ‖2
F

≤ ‖Avec(X)− Avec(Y)‖2
F ≤ ‖A‖2

2‖X−Y‖2
F.

As a result, ‖∇̃`σ(X)− ∇̃`σ(Y)‖F ≤ ‖A‖2
2‖X−Y‖F. This completes the proof.

The following conclusion is a consequence of Proposition A1.

Proposition A2. For any X, Y ∈ Rm×n, it holds that:

˜̀
σ(X) ≤ ˜̀

σ(Y) + 〈∇ ˜̀
σ(Y), X−Y〉+ ‖A‖2

2/2‖X−Y‖2
F. (A1)

Proposition A3. Let {X(k)} be generated by Algorithms 1 or 3 with α > L = ‖A‖2. Then, it holds that:

‖X(k) − X(k+1)‖F → 0.

Proof. We first consider {X(k)} generated by Algorithm 1. Following from the fact that rank(X(k)) ≤ R
and X(k+1) is the best rank-R approximation of Y(k+1), we know that:

α

2
‖X(k+1) − X(k)‖2

F + 〈∇ ˜̀
σ(X(k)), X(k+1) − X(k)〉

=
α

2

∥∥∥∥X(k+1) − X(k) +
1
α
∇`σ(X(k))

∥∥∥∥2

F
− α

2

∥∥∥∥ 1
α
∇`σ(X(k))

∥∥∥∥2

F
≤ 0.

This together with (A1) gives:

˜̀
σ(X(k+1)) ≤ ˜̀

σ(X(k))− α− L
2
‖X(k+1) − X(k)‖2

F,

which implies that the sequence { ˜̀
σ(X(k))} is monotonically decreasing. Due to the lower boundness

of ˜̀
σ, we see that limk→∞ ‖X(k+1) − X(k)‖F = 0.

When {X(k)} is generated by Algorithm 3, after simple computation, we have that X(k+1) is the
minimizer of:

min
X

1
2
‖X−Y(k+1)‖2

F +
λ

α
‖X‖∗.
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we thus have:

α

2
‖X(k+1) − X(k)‖2

F + 〈∇ ˜̀
σ(X(k)), X(k+1) − X(k)〉+ λ‖X(k+1)‖∗ − λ‖X(k)‖∗

=
α

2
‖X(k+1) −Y(k+1)‖2

F + λ‖X(k+1)‖∗ −
α

2

∥∥∥∥ 1
α
∇`σ(X(k))

∥∥∥∥2

F
− λ‖X(k)‖∗ ≤ 0.

This in connection with Proposition A2 reveals:

˜̀
σ(X(k+1)) + λ‖X(k+1)‖∗ ≤ ˜̀

σ(X(k)) + λ‖X(k)‖∗ −
α− L

2
‖X(k+1) − X(k)‖2

F.

Analogously, we have limk→∞ ‖X(k+1) − X(k)‖F = 0. This completes the proof.
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