# How to Secure Valid Quantizations

^{1}

^{2}

## Abstract

**:**

## 1. The Special Rules for a Valid Canonical Quantization

#### Finding the Primitive Ground State

## 2. The Special Rules for a Valid Affine Quantization

**Note:**$p,q\to p;g$ in $|p:q\rangle $)

#### Finding the New Primitive Ground State

## 3. Two Toy Models: One for CQ, One for AQ

## 4. The Benefits of an Affine Quantization for Field Theories

#### 4.1. A Brief Overview of Quantum Field Theory

#### 4.2. A Typical Model of a Covariant Scalar Field

**Comment:**Consider, a rain storm that has a rain quantity=(qu-r) per hour that is $0<(qu-r)<\infty $. If $(qu-r)=0$, there simply is no rain. If instead, it was a snow storm, a similar story could be a snow quantity=(qu-s), where $0<(qu-s)<\infty $. In fact, the physics of both is identical when $(qu-r)=(qu-s)=0$. So we ignore rain and snow when they are absent.

## 5. Applying Affine Quantization to Einstein’s Gravity

## 6. Summary

## Funding

## Conflicts of Interest

## References

- Dirac, P.A.M. The Principles of Quantum Mechanics; Claredon Press: Oxford, UK, 1958; p. 114. [Google Scholar]
- Fubini-Study Metric. Available online: https://en.wikipedia.org/wiki/Fubini%E2%80%93Study_metric (accessed on 1 September 2022).
- Negative Curvature. Available online: https://encyclopediaofmath.org/wiki/Negative_curvature,_surface_of (accessed on 1 September 2022).
- Klauder, J. The Favored Classical Variables to Promote to Quantum Operators. J. High Energy Phys. Gravit. Cosmol.
**2020**, 6, 828–832. [Google Scholar] [CrossRef] - Klauder, J. An Ultralocal Classical and Quantum Gravity Theory. J. High Energy Phys. Gravit. Cosmol.
**2020**, 6, 656–662. [Google Scholar] [CrossRef] - Gouba, L. Affine Quantization on the Half Line. J. High Energy Phys. Gravit. Cosmol.
**2021**, 7, 352–365. [Google Scholar] [CrossRef] - Klauder, J. Using a Toy Model to Improve the Quantization of Gravity and Field Theories. J. High Energy Phys. Gravit. Cosmol.
**2022**, 8, 303–308. [Google Scholar] [CrossRef] - Klauder, J. A Simple Factor in Canonical Quantization Yields Affine Quantization Even for Quantum Gravity. J. High Energy Phys. Gravit. Cosmol.
**2021**, 7, 1328–1332. [Google Scholar] [CrossRef] - Fantoni, R.; Klauder, J.R. Affine Quantization of (φ
^{4})_{4}Succeeds While Canonical Quantization Fails. Phys. Rev. D**2021**, 103, 076013. [Google Scholar] [CrossRef] - Freedman, B.; Smolensky, P.; Weingarten, D. Monte Carlo of the Continuum Limit of
${\phi}_{4}^{4}$ and ${\phi}_{3}^{4}$. Phys. Lett. B
**1982**, 113, 481. [Google Scholar] [CrossRef] - Aizenman, M. Proof of the Triviality of ${\phi}_{d}^{4}$ Field Theory and Some Mean-Field Features of Ising Models for d > 4. Phys. Rev. Lett.
**1981**, 47. [Google Scholar] [CrossRef] - Fröhlich, J. On the Triviality of λ${\phi}_{d}^{4}$ Theories and the Approach to the Critical Point in d ≥ 4 Dimensions. Nucl. Phys. B
**1982**, 200, 281–296. [Google Scholar] [CrossRef] - Aizenman, M.; Duminil-Copin, H. Marginal triviality of the scaling limits of critical 4D Ising and φ
^{4}models. Ann. Math.**2021**, 194, 163. [Google Scholar] [CrossRef] - Arnowitt, R.; Deser, S.; Misner, C.W. Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley & Sons: New York, NY, USA, 1962. [Google Scholar]
- Klauder, J. A Straight Forward Path to a Path Integration of Einstein’s Gravity. arXiv
**2022**, arXiv:2203.15141. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Klauder, J.R.
How to Secure Valid Quantizations. *Entropy* **2022**, *24*, 1374.
https://doi.org/10.3390/e24101374

**AMA Style**

Klauder JR.
How to Secure Valid Quantizations. *Entropy*. 2022; 24(10):1374.
https://doi.org/10.3390/e24101374

**Chicago/Turabian Style**

Klauder, John R.
2022. "How to Secure Valid Quantizations" *Entropy* 24, no. 10: 1374.
https://doi.org/10.3390/e24101374