Multilevel Laser Induced Continuum Structure
Abstract
:1. Introduction
2. Multilevel LICS System
3. Excitation Probabilities and Fano Profiles
3.1. System Initialized in a Coherent Superposition of States
3.2. System Initialized in One of the Ground States
3.3. Fano Profile
3.4. Non-Degeneracy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rabi, I.I. Space Quantization in a Gyrating Magnetic Field. Phys. Rev. 1937, 51, 652. [Google Scholar] [CrossRef]
- Landau, L.D. Zur theorie der energieubertragung II. Phys. Z. Sowjetunion 1932, 2, 46. [Google Scholar]
- Zener, C. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. A 1932, 137, 696. [Google Scholar]
- Stückelberg, E.C.G. Theory of Inelastic Collisions between Atoms. Helv. Phys. Acta 1932, 5, 369. [Google Scholar]
- Majorana, E. Atomi orientati in campo magnetico variabile. Nuovo Cimento 1932, 9, 43. [Google Scholar] [CrossRef]
- Rosen, N.; Zener, C. Double Stern-Gerlach Experiment and Related Collision Phenomena. Phys. Rev. 1932, 40, 502. [Google Scholar] [CrossRef]
- Allen, L.; Eberly, J.H. Optical Resonance and Two-Level Atoms; Dover: New York, NY, USA, 1975. [Google Scholar]
- Shore, B.W. The Theory of Coherent Atomic Excitation; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Vitanov, N.V.; Halfmann, T.; Shore, B.W.; Bergmann, K. Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. 2001, 52, 763–809. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Rangelov, A.A.; Shore, B.W.; Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 2017, 89, 015006. [Google Scholar] [CrossRef]
- Harris, S.E. Electromagnetically induced transparency. Phys. Today 1997, 50, 36. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633–673. [Google Scholar] [CrossRef] [Green Version]
- Ullah, K.; Jing, K.; Saif, F. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics. Phys. Rev. A 2018, 97, 033812. [Google Scholar] [CrossRef]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866–1878. [Google Scholar] [CrossRef]
- Armstrong, L.; Beers, B.L.; Feneuille, S. Resonant multiphoton ionization via the Fano autoionization formalism. Phys. Rev. A 1975, 12, 1903–1910. [Google Scholar] [CrossRef]
- Heller, Y.I.; Popov, A.K. Autoionizing-like resonances induced by a laser field. Opt. Commun. 1976, 18, 1. [Google Scholar] [CrossRef]
- Coleman, P.E.; Knight, P.L.; Burnett, K. Laser-induced continuum structure in multiphoton ionisation. Opt. Commun. 1982, 42, 171–178. [Google Scholar] [CrossRef]
- Halfmann, T.; Yatsenko, L.P.; Shapiro, M.; Shore, B.W.; Bergmann, K. Population trapping and laser-induced continuum structure in helium: Experiment and theory. Phys. Rev. A 1998, 58, R46. [Google Scholar] [CrossRef]
- Yatsenko, L.P.; Halfmann, T.; Shore, B.W.; Bergmann, K. Photoionization suppression by continuum coherence: Experiment and theory. Phys. Rev. A 1999, 59, 2926. [Google Scholar] [CrossRef] [Green Version]
- Peters, T.; Yatsenko, L.P.; Halfmann, T. Experimental Demonstration of Selective Coherent Population Transfer via a Continuum. Phys. Rev. Lett. 2005, 95, 103601. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.E.; Hioe, F.T. Coherent population transfer via the continuum. Phys. Rev. Lett. 1992, 68, 3523. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.E.; Hioe, F.T. Selective excitation via the continuum and suppression of ionization. Phys. Rev. A 1993, 47, 571. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.E.; Hioe, F.T. Excitation using two lasers: Effects of continuum-continuum transitions. Phys. Lett. A 1995, 199, 145. [Google Scholar] [CrossRef]
- Carroll, C.E.; Hioe, F.T. Selective excitation and structure in the continuum. Phys. Rev. A 1996, 54, 5147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, T.; Halfmann, T. Stimulated Raman adiabatic passage via the ionization continuum in helium: Experiment and theory. Optics Commun. 2007, 271, 475. [Google Scholar] [CrossRef]
- Nakajima, T.; Elk, M.; Zhang, J.; Lambropoulos, P. Population transfer through the continuum. Phys. Rev. A 1994, 50, R913. [Google Scholar] [CrossRef]
- Paspalakis, E.; Protopapas, M.; Knight, P.L. Population transfer through the continuum with temporally delayed chirped laser pulses. Opt. Commun. 1997, 142, 34–40. [Google Scholar] [CrossRef]
- Paspalakis, E.; Protopapas, M.; Knight, P.L. Time-dependent pulse and frequency effects in population trapping via the continuum. Opt. Commun. 1998, 31, 775. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Stenholm, S. Population transfer by delayed pulses via continuum states. Phys. Rev. A 1997, 56, 741. [Google Scholar] [CrossRef]
- Yatsenko, L.P.; Unanyan, R.G.; Bergmann, K.; Halfmann, T.; Shore, B.W. Population transfer through the continuum using laser-controlled Stark shifts. Opt. Commun. 1997, 135, 406–412. [Google Scholar] [CrossRef]
- Unanyan, R.G.; Vitanov, N.V.; Stenholm, S. Suppression of incoherent ionization in population transfer via continuum. Phys. Rev. A 1998, 57, 462. [Google Scholar] [CrossRef]
- Rangelov, A.A.; Vitanov, N.V.; Arimondo, E. Stimulated Raman adiabatic passage into continuum. Phys. Rev. A 2007, 76, 043414. [Google Scholar] [CrossRef] [Green Version]
- Knight, P.L.; Lauder, M.A.; Dalton, B.J. Laser-induced continuum structure. Phys. Rep. 1990, 190, 1–61. [Google Scholar] [CrossRef]
- Bohmer, K.; Halfmann, T.; Yatsenko, L.P.; Charalambidis, D.; Horsmans, A.; Bergmann, K. Laser-induced continuum structure in the two ionization continua of xenon. Phys. Rev. A 2002, 66, 013406. [Google Scholar] [CrossRef] [Green Version]
- Unanyan, R.G.; Vitanov, N.V.; Shore, B.W.; Bergmann, K. Coherent properties of a tripod system coupled via a continuum. Phys. Rev. A 2000, 61, 043408. [Google Scholar] [CrossRef] [Green Version]
- Parzynski, R. Raman-enhanced multiphoton ionisation. J. Phys. B At. Mol. Phys. 1987, 20, 5035. [Google Scholar] [CrossRef]
- Parzynski, R. Fine-splitted autoionising-like resonance spectrum. Phys. Rev. A 1988, 130, 8. [Google Scholar] [CrossRef]
- Kamenetskii, E.; Sadreev, A.; Miroshnichenko, A. (Eds.) Fano Resonances in Optics and Microwaves; Springer Series in Optical Sciences Book Series; Springer: Berlin, Germany, 2018; Volume 219. [Google Scholar]
- Gryzlova, E.V.; Grum-Grzhimailo, A.N.; Magunov, A.I.; Strakhova, S.I. Laser-induced optical activity in range of Rydberg autoionizing states of xenon. Optics Spectr. 2010, 109, 59. [Google Scholar] [CrossRef]
- Gryzlova, E.V.; Magunov, A.I.; Strakhova, S.I. Influence of the laser-induced continuum structure on cross sections of the over threshold scattering of photons on atom. Optics Spectr. 2011, 110, 153. [Google Scholar] [CrossRef]
- Eilam, A.; Shapiro, M. Strong-field adiabatic passage in the continuum: Electromagnetically induced transparency and stimulated Raman adiabatic passage. Phys. Rev. A 2012, 85, 012520. [Google Scholar] [CrossRef] [Green Version]
- Mihelic, A.; Zitnik, M. Two-photon excitation to autoionizing states of He detected via radiative cascades to the metastable states. Phys. Rev. A 2015, 91, 063409. [Google Scholar] [CrossRef]
- Crespi, A.; Sansoni, L.; Valle, G.D.; Ciamei, A.; Ramponi, R.; Sciarrino, F.; Mataloni, P.; Longhi, S.; Osellame, R. Particle Statistics Affects Quantum Decay and Fano Interference. Phys. Rev. Lett. 2015, 114, 090201. [Google Scholar] [CrossRef] [Green Version]
- Khoa, D.Q.; Duc, N.B.; Thanh, T.D.; Quy, H.Q.; Van, C.L.; Leonski, W. Broadband laser-driven electromagnetically induced transparency in three-level systems with a double Fano continuum. J. Opt. Soc. Am. B 2018, 35, 1536. [Google Scholar] [CrossRef]
- Litvinenko, K.L.; Nguyen, H.L.; Redlich, B.; Pidgeon, C.R.; Abrosimov, N.V.; Andreev, Y.; Huang, Z.; Murdin, B.N. The multi-photon induced Fano effect. Nat. Commun. 2021, 12, 454. [Google Scholar] [CrossRef] [PubMed]
- Thanopulos, I.; Shapiro, M. Coherence Effects in Laser-Induced Continuum Structure. Adv. Quantum Chem. 2010, 60, 105–161. [Google Scholar]
- Lukyanchuk, B.; Zheludev, N.; Maier, S.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Mat. 2010, 9, 707. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wen, F.; Zhen, Y.-R.; Nordlander, P.; Halas, N.J. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc. Natl. Acad. Sci. USA 2013, 110, 9215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhen, Y.-R.; Neumann, O.; Day, J.K.; Nordlander, P.; Halas, N.J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424. [Google Scholar] [CrossRef]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photonics 2017, 11, 543. [Google Scholar] [CrossRef]
- Varguet, H.; Rousseaux, B.; Dzsotjan, D.; Jauslin, H.R.; Guérin, S.; Colas des Francs, G. Non-hermitian Hamiltonian description for quantum plasmonics: From dissipative dressed atom picture to Fano states. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 055404. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Langguth, L.; Weiss, T.; Kästel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Un, I.W.; Tai, N.H.; Yen, T.J. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt. Express 2009, 17, 15372. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, B.; Khokhar, A.Z.; Rue, R.M.D.L.; McMeekin, S.G.; Johnson, N.P. Asymmetric split ring resonators for optical sensing of organic materials. Opt. Express 2009, 17, 1107. [Google Scholar] [CrossRef] [PubMed]
- Zheludev, N.I.; Prosvirnin, S.L.; Papasimakis, N.; Fedotov, V.A. Lasing spaser. Nature Photon. 2008, 2, 351. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.S.; Lassiter, J.B.; Swanglap, P.; Sobhani, H.; Khatua, S.; Nordlander, P.; Halas, N.J.; Link, S. A Plasmonic Fano Switch. Nano Lett. 2012, 12, 4977. [Google Scholar] [CrossRef]
- Fedotov, V.A.; Rose, M.; Prosvirnin, S.L.; Papasimakis, N.; Zheludev, N.I. Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry. Phys. Rev. Lett. 2007, 99, 147401. [Google Scholar] [CrossRef] [Green Version]
- Samson, Z.L.; MacDonald, K.F.; De Angelis, F.; Gholipour, B.; Knight, K.; Huang, C.C.; Di Fabrizio, E.; Hewak, D.W.; Zheludev, N.I. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 2010, 96, 143105. [Google Scholar] [CrossRef] [Green Version]
- Kukuu, A.; Amano, T.; Karasawa, T.; Maeshima, N.; Hino, K. Instability of dynamic localization in the intense terahertz-driven semiconductor Wannier-Stark ladder due to the dynamic Fano resonance. Phys. Rev. B 2010, 82, 115315. [Google Scholar] [CrossRef] [Green Version]
- Maeshima, N.; Hino, K. Dynamical Fano resonance of an exciton in laser-driven semiconductor superlattices. Phys. Rev. B 2012, 85, 205305. [Google Scholar] [CrossRef] [Green Version]
- Fan, P.; Yu, Z.; Fan, S.; Brongersma, M.L. Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 2014, 13, 471. [Google Scholar] [CrossRef]
- Fan, S.; Joannopoulos, J.D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 2002, 65, 235112. [Google Scholar] [CrossRef] [Green Version]
- Christ, A.; Tikhodeev, S.G.; Gippius, N.A.; Kuhl, J.; Giessen, H. Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab. Phys. Rev. Lett. 2003, 91, 183901. [Google Scholar] [CrossRef]
- Wang, H.; Chini, M.; Chen, S.; Zhang, C.-H.; He, F.; Cheng, Y.; Wu, Y.; Thumm, U.; Chang, Z. Attosecond Time-Resolved Autoionization of Argon. Phys. Rev. Lett. 2010, 105, 143002. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.; Kaldun, A.; Argenti, L.; Raith, P.; Meyer, K.; Laux, M.; Zhang, Y.; Blattermann, A.; Hagstotz, S.; Ding, T.; et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 2014, 516, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruson, V.; Barreau, L.; Jimenez-Galan, A.; Risoud, F.; Caillat, J.; Maquet, A.; Carre, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; et al. Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron. Science 2016, 354, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaldun, A.; Blattermann, A.; Stooß, V.; Donsa, S.; Wei, H.; Pazourek, R.; Nagele, S.; Ott, C.; Lin, C.D.; Burgdorfer, J.; et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 2016, 354, 738. [Google Scholar] [CrossRef]
- Kotur, M.; Guenot, D.; Jimenez-Galan, A.; Kroon, D.; Larsen, E.W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C.L.; et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 2016, 7, 10566. [Google Scholar] [CrossRef] [Green Version]
- Cirelli, C.; Marante, C.; Heuser, S.; Petersson, C.L.M.; Galan, A.J.; Argenti, L.; Zhong, S.; Busto, D.; Isinger, M.; Nandi, S.; et al. Anisotropic photoemission time delays close to a Fano resonance. Nat. Commun. 2018, 9, 955. [Google Scholar] [CrossRef]
- Longhi, S. Transfer of light waves in optical waveguides via a continuum. Phys. Rev. A 2008, 78, 013815. [Google Scholar] [CrossRef]
- Dreisow, F.; Szameit, A.; Heinrich, M.; Keil, R.; Nolte, S.; Tunnermann, A.; Longhi, S. Adiabatic transfer of light via a continuum in optical waveguides. Opt. Lett. 2009, 34, 2405. [Google Scholar] [CrossRef]
- Bayal, I.; Dutta, B.K.; Panchadhyayee, P.; Mahapatra, P.K. Optical analogue of double Fano resonance via dressed twin continua. J. Opt. Soc. Am. B 2013, 30, 3202. [Google Scholar] [CrossRef]
- Bayal, I.; Dutta, B.K.; Panchadhyayee, P.; Mahapatra, P.K. Variable-coupling-induced optical trapping in optical waveguides via dressed continuum. J. Mod. Opt. 2013, 60, 1006. [Google Scholar] [CrossRef]
- Zitnik, M.; Krusic, S.; Bucar, K.; Mihelic, A. Anticrossing spectrometry with synchrotron light. Phys. Rev. A 2018, 97, 063424. [Google Scholar]
- Venzke, J.; Becker, A.; Jaron-Becker, A. Asymmetries in ionization of atomic superposition states by ultrashort laser pulses. Sci. Rep. 2020, 10, 16164. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.; Kaldun, A.; Raith, P.; Meyer, K.; Laux, M.; Evers, J.; Keitel, C.H.; Greene, C.H.; Pfeifer, T. Lorentz Meets Fano in Spectral Line Shapes: A Universal Phase and Its Laser Control. Science 2013, 340, 716. [Google Scholar] [CrossRef] [Green Version]
- Shnitman, A.; Sofer, I.; Golub, I.; Yogev, A.; Shapiro, M.; Chen, Z.; Brumer, P. Experimental Observation of Laser Control: Electronic Branching in the Photodissociation of Na2. Phys. Rev. Lett. 1996, 76, 2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eramo, R.; Cavalieri, S. Structures induced by laser in degenerate continua for the coherent control of ionization branching ratios. Opt. Commun. 1998, 149, 296. [Google Scholar] [CrossRef]
- Pavlov, L.I.; Dimov, S.S.; Metchkov, D.I.; Mileva, G.M.; Stamenov, K.V.; Altshuller, G.B. Efficient tunable tripler of optical frequency at an autoionizing-like resonance in a continuum. Phys. Lett. A 1982, 89, 441–443. [Google Scholar] [CrossRef]
- Weninger, C.; Purvis, M.; Ryan, D.; London, R.A.; Bozek, J.D.; Bostedt, C.; Graf, A.; Brown, G.; Rocca, J.J.; Rohringer, N. Stimulated Electronic X-Ray Raman Scattering. Phys. Rev. Lett. 2013, 111, 233902. [Google Scholar] [CrossRef] [PubMed]
- Douguet, N.; Grum-Grzhimailo, A.N.; Gryzlova, E.V.; Staroselskaya, E.I.; Venzke, J.; Bartschat, K. Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses. Phys. Rev. A 2016, 93, 033402. [Google Scholar] [CrossRef] [Green Version]
- Faucher, O.; Hertz, E.; Lavorel, B.; Chaux, R.; Dreier, T.; Berger, H.; Charalambidis, D. Observation of laser-induced continuum structure in the NO molecule. J. Phys. B At. Mol. Phys. 1999, 32, 4485–4493. [Google Scholar] [CrossRef]
- Tanaka, S.; Mukamel, S. Coherent X-Ray Raman Spectroscopy: A Nonlinear Local Probe for Electronic Excitations. Phys. Rev. Lett. 2002, 89, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuleff, A.I.; Cederbaum, L.S. Radiation Generated by the Ultrafast Migration of a Positive Charge Following the Ionization of a Molecular System. Phys. Rev. Lett. 2011, 106, 053001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, T.; Buica, G. Modification of the photoelectron angular distribution through laser-induced continuum structure. Phys. Rev. A 2005, 71, 013413. [Google Scholar] [CrossRef] [Green Version]
- Rangelov, A.A.; Vitanov, N.V.; Shore, B.W. Population trapping in three-state quantum loops revealed by Householder reflections. Phys. Rev. A 2008, 77, 033404. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatanov, K.; Vitanov, N. Multilevel Laser Induced Continuum Structure. Entropy 2021, 23, 891. https://doi.org/10.3390/e23070891
Zlatanov K, Vitanov N. Multilevel Laser Induced Continuum Structure. Entropy. 2021; 23(7):891. https://doi.org/10.3390/e23070891
Chicago/Turabian StyleZlatanov, Kaloyan, and Nikolay Vitanov. 2021. "Multilevel Laser Induced Continuum Structure" Entropy 23, no. 7: 891. https://doi.org/10.3390/e23070891
APA StyleZlatanov, K., & Vitanov, N. (2021). Multilevel Laser Induced Continuum Structure. Entropy, 23(7), 891. https://doi.org/10.3390/e23070891