Retinex-Based Fast Algorithm for Low-Light Image Enhancement
Abstract
:1. Introduction
2. Related Work
2.1. Retinex Model
2.2. Gamma Correction
2.3. HSV Color Space
3. Our Approach
3.1. Brightness Enhancement
3.2. Dynamic Range Expansion
3.3. Saturation Adjustment
4. Comparative Experiment and Discussion
4.1. Computational Time Comparison
4.2. Visual Comparison
4.3. Objective Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, X.; Zeng, D.; Huang, Y.; Liao, Y.; Ding, X.; Paisley, J. A fusion-based enhancing method for weakly illuminated images. Signal Process. 2016, 129, 82–96. [Google Scholar] [CrossRef]
- Wang, Y.F.; Liu, H.M.; Fu, Z.W. Low-Light Image Enhancement via the Absorption Light Scattering Model. (in English). IEEE Trans. Image Process. 2019, 28, 5679–5690. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, X.; Yuan, X.; Gao, Z. An Experiment-Based Review of Low-Light Image Enhancement Methods. IEEE Access. 2020, 8, 87884–87917. [Google Scholar] [CrossRef]
- Bora, D.J.; Bania, R.K.; Che, N. A Local Type-2 Fuzzy Set Based Technique for the Stain Image Enhancement. Ing. Solidar. 2019, 15, 1–22. [Google Scholar] [CrossRef]
- Yun, H.J.; Wu, Z.Y.; Wang, G.J.; Tong, G.; Yang, H. A Novel Enhancement Algorithm Combined with Improved Fuzzy Set Theory for Low Illumination Images. Math. Probl. Eng. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Rahman, S.; Rahman, M.M.; Abdullah-Al-Wadud, M.; Al-Quaderi, G.D.; Shoyaib, M. An adaptive gamma correction for image enhancement. Eurasip. J. Image Vide 2016, 2016, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Pu, Y.F.; Rahman, Z.; Aamir, M. Fractional-Order Fusion Model for Low-Light Image Enhancement. Symmetry 2019, 11, 574. [Google Scholar] [CrossRef] [Green Version]
- Reddy, E.; Reddy, R. Dynamic Clipped Histogram Equalization Technique for Enhancing Low Contrast Images. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2019, 89, 673–698. [Google Scholar] [CrossRef]
- Ooi, C.H.; Kong, N.S.P.; Ibrahim, H. Bi-Histogram Equalization with a Plateau Limit for Digital Image Enhancement. IEEE T Consum. Electr. 2009, 55, 2072–2080. [Google Scholar] [CrossRef]
- Singh, K.; Kapoor, R. Image enhancement using Exposure based Sub Image Histogram Equalization. Pattern Recogn Lett. 2014, 36, 10–14. [Google Scholar] [CrossRef]
- Tan, S.F.; Isa, N.A.M. Exposure Based Multi-Histogram Equalization Contrast Enhancement for Non-Uniform Illumination Images. IEEE Access 2019, 7, 70842–70861. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast limited adaptive histogram equalization. Graph. Gems Iv 1994, 474–485. [Google Scholar] [CrossRef]
- Li, M.D.; Liu, J.Y.; Yang, W.H.; Sun, X.Y.; Guo, Z.M. Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model. IEEE T Image Process 2018, 27, 2828–2841. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Feng, Z.; Liu, J.L.; Hao, S.J. Single-image low-light enhancement via generating and fusing multiple sources. Neural Comput. Appl. 2020, 32, 6455–6465. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Guo, K.; Jia, K.; Hu, B.; Tao, D. A Joint Intrinsic-Extrinsic Prior Model for Retinex. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4020–4029. [Google Scholar]
- Li, Z.; Xiaochen, H.; Jiafeng, L.; Jing, Z.; Xiaoguang, L. A Naturalness-Preserved Low-Light Enhancement Algorithm for Intelligent Analysis. Chin. J. Electron. 2019, 28, 316–324. [Google Scholar]
- Guo, X.J.; Li, Y.; Ling, H.B. LIME: Low-Light Image Enhancement via Illumination Map Estimation. IEEE T Image Process 2017, 26, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lee, R.; Park, M.; Lee, S.H. Low-Light Image Enhancement Based on Maximal Diffusion Values. IEEE Access 2019, 7, 129150–129163. [Google Scholar] [CrossRef]
- Wang, W.C.; Chen, Z.X.; Yuan, X.H.; Wu, X.J. Adaptive image enhancement method for correcting low-illumination images. Inf. Sci. 2019, 496, 25–41. [Google Scholar] [CrossRef]
- Chang, Y.; Jung, C.; Ke, P.; Song, H.; Hwang, J. Automatic Contrast-Limited Adaptive Histogram Equalization With Dual Gamma Correction. IEEE Access 2018, 6, 11782–11792. [Google Scholar] [CrossRef]
- Srinivas, K.; Bhandari, A.K. Low light image enhancement with adaptive sigmoid transfer function. IET Image Process 2020, 14, 668–678. [Google Scholar] [CrossRef]
- Kansal, S.; Tripathi, R.K. Adaptive gamma correction for contrast enhancement of remote sensing images. Multimed Tools Appl 2019, 78, 25241–25258. [Google Scholar] [CrossRef]
- Al-Hashim, M.A.; Al-Ameen, Z. Retinex-based multiphase algorithm for low-light image enhancement. Traitement Du Signal 2020, 37, 733–743. [Google Scholar] [CrossRef]
- Ashiba, M.I.; Tolba, M.S.; El-Fishawy, A.S.; El-Samie, F.E.A. Gamma correction enhancement of infrared night vision images using histogram processing. Multimed Tools Appl 2019, 78, 27771–27783. [Google Scholar] [CrossRef]
- Kallel, F.; Ben Hamida, A. A New Adaptive Gamma Correction Based Algorithm Using DWT-SVD for Non-Contrast CT Image Enhancement. IEEE Trans Nanobioscience 2017, 16, 666–675. [Google Scholar] [CrossRef]
- Chandrasekharan, R.; Sasikumar, M. Fuzzy Transform for Contrast Enhancement of Nonuniform Illumination Images. IEEE Signal Proc Let 2018, 25, 813–817. [Google Scholar] [CrossRef]
- Li, Z.; Jia, Z.; Yang, J.; Kasabov, N. Low Illumination Video Image Enhancement. IEEE Photonics J. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Dhal, K.G.; Ray, S.; Das, S.; Biswas, A.; Ghosh, S. Hue-Preserving and Gamut Problem-Free Histopathology Image Enhancement. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 645–672. [Google Scholar] [CrossRef]
- Lyu, W.J.; Lu, W.; Ma, M. No-reference quality metric for contrast-distorted image based on gradient domain and HSV space. J. Vis. Commun. Image Represent. 2020, 69, 102797–102806. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Image enhancement based on intuitionistic fuzzy sets theory. Iet Image Process 2016, 10, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, K.; Liu, Z.; Zeng, Z. Study on Denoising and Enhancement Method in SAR Image based on Wavelet Packet and Fuzzy Set. In Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019; pp. 1541–1544. [Google Scholar]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE T Image Process 2015, 24, 3522–3533. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Khari, M.; Gupta, V.; Verdu, E.; Wu, X.; Herrera-Viedma, E.; Crespo, R.G. Fast Single Image Haze Removal Method for Inhomogeneous Environment Using Variable Scattering Coefficient. Cmes-Comput. Modeling Eng. Sci. 2020, 123, 1175–1192. [Google Scholar] [CrossRef]
- Ren, Y.; Ying, Z.; Li, T.H.; Li, G. LECARM: Low-Light Image Enhancement Using the Camera Response Model. IEEE T Circ Syst Vid 2019, 29, 968–981. [Google Scholar] [CrossRef]
- Hao, S.; Han, X.; Guo, Y.; Xu, X.; Wang, M. Low-Light Image Enhancement with Semi-Decoupled Decomposition. IEEE T Multimed. 2020. [Google Scholar] [CrossRef]
- Ma, K.; Duanmu, Z.; Yeganeh, H.; Wang, Z. Multi-Exposure Image Fusion by Optimizing A Structural Similarity Index. IEEE Trans. Comput. Imaging 2018, 4, 60–72. [Google Scholar] [CrossRef]
Image Size | 100 × 100 | 700 × 700 | 1300 × 1300 | 1900 × 1900 | 2500 × 2500 | 3100 × 3100 | 3700 × 3700 | 4300 × 4300 |
---|---|---|---|---|---|---|---|---|
LECARM | 0.151 | 0.396 | 0.707 | 1.234 | 1.934 | 2.823 | 3.951 | 5.398 |
AFEM | 0.048 | 0.204 | 0.566 | 1.136 | 2.014 | 3.075 | 4.674 | 5.959 |
LIME | 0.030 | 0.124 | 0.394 | 0.825 | 1.437 | 2.203 | 3.209 | 4.363 |
FFM | 0.182 | 5.043 | 17.071 | 36.819 | 65.744 | 95.577 | 142.183 | 197.190 |
SDD | 0.222 | 8.882 | 34.930 | 79.808 | 139.754 | 209.301 | 345.587 | 526.162 |
JIEP | 0.079 | 3.565 | 13.332 | 29.159 | 45.297 | 55.327 | 82.677 | 120.519 |
Proposed | 0.013 | 0.071 | 0.249 | 0.519 | 0.909 | 1.419 | 2.076 | 2.804 |
Metrics | LECARM | AFEM | FFM | JIEP | LIME | SDD | Proposed |
---|---|---|---|---|---|---|---|
PIQE | 39.818 | 39.809 | 42.884 | 40.072 | 42.705 | 51.457 | 38.601 |
LOE | 415.594 | 253.646 | 291.906 | 296.568 | 749.862 | 493.806 | 7.660 |
MSE | 3777.2175 | 2021.305 | 2823.849 | 2241.768 | 1153.584 | 1617.479 | 1158.174 |
SSIM | 0.531 | 0.747 | 0.709 | 0.732 | 0.739 | 0.751 | 0.753 |
PSNR | 12.504 | 16.350 | 14.464 | 15.847 | 18.136 | 17.511 | 18.258 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Long, W.; He, L.; Li, Y.; Ding, W. Retinex-Based Fast Algorithm for Low-Light Image Enhancement. Entropy 2021, 23, 746. https://doi.org/10.3390/e23060746
Liu S, Long W, He L, Li Y, Ding W. Retinex-Based Fast Algorithm for Low-Light Image Enhancement. Entropy. 2021; 23(6):746. https://doi.org/10.3390/e23060746
Chicago/Turabian StyleLiu, Shouxin, Wei Long, Lei He, Yanyan Li, and Wei Ding. 2021. "Retinex-Based Fast Algorithm for Low-Light Image Enhancement" Entropy 23, no. 6: 746. https://doi.org/10.3390/e23060746
APA StyleLiu, S., Long, W., He, L., Li, Y., & Ding, W. (2021). Retinex-Based Fast Algorithm for Low-Light Image Enhancement. Entropy, 23(6), 746. https://doi.org/10.3390/e23060746