Variational Quantum Chemistry Programs in JaqalPaq
Abstract
:1. Introduction
- Parse Jaqal text files into Jaqal quantum circuit objects.
- Manipulate Jaqal quantum circuit objects using python.
- Emulate the behavior of Jaqal quantum circuit objects.
- Output Jaqal text files from Jaqal quantum circuit objects.
2. Setup and Installation of JaqalPaq
2.1. Generic Notes on the Installation Procedure
2.2. Installing OpenFermion
2.3. Installing PySCF
2.4. Installing OpenFermionPySCF
2.5. Installing JaqalPaq
2.6. Installing pyGSTi
2.7. Installing QSCOUT-Gatemodels
3. Brief Review of the Variational Quantum Eigensolver (VQE) Algorithm
4. : Molecular Hydrogen
4.1. : Derivation of the Hamiltonian
4.2. : Derivation of the UCCSD Operator
5. : Helium Hydride
5.1. : Derivation of the Hamiltonian
5.2. : Derivation of the UCCSD Operator
6. : Lithium Hydride
6.1. : Derivation of the Hamiltonian
6.2. : Derivation of the UCCSD Operator
7. Molecules on Future Hardware
: Variant for a Four-Qubit Computer
8. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. H2 Code
Appendix B. HeH+ Code
Appendix C. LiH Code
References
- Morrison, B.C.A.; Landahl, A.J.; Lobser, D.S.; Rudinger, K.M.; Russo, A.E.; Wall, J.W.V.D.; Maunz, P. Just another quantum assembly language (Jaqal). arXiv 2020, arXiv:2008.08042. [Google Scholar]
- Landahl, A.J.; Lobser, D.S.; Morrison, B.C.A.; Rudinger, K.M.; Russo, A.E.; Wall, J.W.V.D.; Maunz, P. Jaqal, the Quantum Assembly Language for QSCOUT. arXiv 2020, arXiv:2003.09382. [Google Scholar]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 2016, 18, 023023. [Google Scholar] [CrossRef]
- McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S.C.; Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 2020, 92, 015003. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar]
- Nielsen, E.; Blume-Kohout, R.J.; Rudinger, K.M.; Proctor, T.J.; Saldyt, L. Python GST Implementation (PyGSTi) v. 0.9; Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2019. [Google Scholar] [CrossRef]
- Nielsen, E.; Rudinger, K.; Proctor, T.; Russo, A.; Young, K.; Blume-Kohout, R. Probing quantum processor performance with pyGSTi. Quantum Sci. Technol. 2020, 5, 044002. [Google Scholar] [CrossRef]
- Aspuru-Guzik, A.; Dutoi, A.D.; Love, P.J.; Head-Gordon, M. Simulated quantum computation of molecular energies. Science 2005, 309, 1704–1707. [Google Scholar] [CrossRef] [Green Version]
- Somma, R.D.; Subaş ı, Y.B.U. Complexity of Quantum State Verification in the Quantum Linear Systems Problem. PRX Quantum 2021, 2, 010315. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Simons, J. A unitary multiconfigurational coupled-cluster method: Theory and applications. J. Chem. Phys. 1988, 88, 993–1002. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Kucharski, S.A.; Noga, J. Alternative coupled-cluster ansätze II. The unitary coupled-cluster method. Chem. Phys. Lett. 1989, 155, 133–140. [Google Scholar] [CrossRef]
- Taube, A.G.; Bartlett, R.J. New perspectives on unitary coupled-cluster theory. Int. J. Quantum Chem. 2006, 106, 3393–3401. [Google Scholar] [CrossRef]
- Harsha, G.; Shiozaki, T.; Scuseria, G.E. On the difference between variational and unitary coupled cluster theories. J. Chem. Phys. 2018, 148, 044107. [Google Scholar] [CrossRef]
- Gokhale, P.; Angiuli, O.; Ding, Y.; Gui, K.; Tomesh, T.; Suchara, M.; Martonosi, M.; Chong, F.T. Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families. arXiv 2019, arXiv:1907.13623. [Google Scholar]
- Huggins, W.J.; McClean, J.; Rubin, N.; Jiang, Z.; Wiebe, N.; Whaley, K.B.; Babbush, R. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. arXiv 2019, arXiv:1907.13117. [Google Scholar]
- Jena, A.; Genin, S.; Mosca, M. Pauli partitioning with respect to gate sets. arXiv 2019, arXiv:1907.07859. [Google Scholar]
- Yen, T.C.; Verteletskyi, V.; Izmaylov, A.F. Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. J. Chem. Theory Comput. 2020, 16, 2400–2409. [Google Scholar] [CrossRef]
- Zhao, A.; Tranter, A.; Kirby, W.M.; Ung, S.F.; Miyake, A.; Love, P.J. Measurement reduction in variational quantum algorithms. Phys. Rev. 2020, 101, 062322. [Google Scholar] [CrossRef]
- Romero, J.; Babbush, R.; McClean, J.R.; Hempel, C.; Love, P.J.; Aspuru-Guzik, A. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Sci. Technol. 2018, 4, 014008. [Google Scholar] [CrossRef] [Green Version]
- Arrasmith, A.; Cincio, L.; Somma, R.D.; Coles, P.J. Operator sampling for shot-frugal optimization in variational algorithms. arXiv 2020, arXiv:2004.06252. [Google Scholar]
- Lavrijsen, W.; Tudor, A.; Müller, J.; Iancu, C.; de Jong, W. Classical optimizers for noisy intermediate-scale quantum devices. arXiv 2020, arXiv:2004.03004. [Google Scholar]
- Lanyon, B.P.; Whitfield, J.D.; Gillett, G.G.; Goggin, M.E.; Almeida, M.P.; Kassal, I.; Biamonte, J.D.; Mohseni, M.; Powell, B.J.; Barbieri, M.; et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2010, 2, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Malley, P.J.; Babbush, R.; Kivlichan, I.D.; Romero, J.; McClean, J.R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; et al. Scalable quantum simulation of molecular energies. Phys. Rev. 2016, 6, 031007. [Google Scholar] [CrossRef]
- Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242–246. [Google Scholar] [CrossRef]
- Colless, J.I.; Ramasesh, V.V.; Dahlen, D.; Blok, M.S.; Kimchi-Schwartz, M.E.; McClean, J.R.; Carter, J.; de Jong, W.A.; Siddiqi, I. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm. Phys. Rev. X 2018, 8, 011021. [Google Scholar] [CrossRef] [Green Version]
- Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B.P.; Love, P.; Babbush, R.; et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. Phys. Rev. X 2018, 8, 031022. [Google Scholar] [CrossRef] [Green Version]
- Bravyi, S.; Gambetta, J.M.; Mezzacapo, A.; Temme, K. Tapering off qubits to simulate fermionic Hamiltonians. arXiv 2017, arXiv:1701.08213. [Google Scholar]
- Kirby, W.M.; Love, P.J. Contextuality Test of the Nonclassicality of Variational Quantum Eigensolvers. Phys. Rev. Lett. 2019, 123, 200501. [Google Scholar] [CrossRef] [Green Version]
- Seeley, J.T.; Richard, M.J.; Love, P.J. The Bravyi-Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 2012, 137, 224109. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Berkelbach, T.C.; Blunt, N.S.; Booth, G.H.; Guo, S.; Li, Z.; Liu, J.; McClain, J.; Sayfutyarova, E.R.; Sharma, S.; et al. The Python-based Simulations of Chemistry Framework (PySCF). arXiv 2017, arXiv:1701.08223. [Google Scholar]
- Yung, M.H.; Casanova, J.; Mezzacapo, A.; Mcclean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E. From transistor to trapped-ion computers for quantum chemistry. Sci. Rep. 2014, 4, 3589. [Google Scholar] [CrossRef] [Green Version]
- Maslov, D. Basic circuit compilation techniques for an ion-trap quantum machine. New J. Phys. 2017, 19, 023035. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- McClean, J.R.; Sung, K.J.; Kivlichan, I.D.; Cao, Y.; Dai, C.; Fried, E.S.; Gidney, C.; Gimby, B.; Gokhale, P.; Häner, T.; et al. OpenFermion: The Electronic Structure Package for Quantum Computers. arXiv 2017, arXiv:1710.07629. [Google Scholar]
Molecule | Protons | Electrons | Orbitals | Hamiltonian | Qubits | Basis | Section |
---|---|---|---|---|---|---|---|
Terms | |||||||
2 | 2 | 2 | 6 | 2 | STO-3G | Section 4 | |
3 | 2 | 2 | 9 | 2 | STO-3G | Section 5 | |
4 | 4 | 3 | 13 | 3 | STO-6G | Section 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maupin, O.G.; Baczewski, A.D.; Love, P.J.; Landahl, A.J. Variational Quantum Chemistry Programs in JaqalPaq. Entropy 2021, 23, 657. https://doi.org/10.3390/e23060657
Maupin OG, Baczewski AD, Love PJ, Landahl AJ. Variational Quantum Chemistry Programs in JaqalPaq. Entropy. 2021; 23(6):657. https://doi.org/10.3390/e23060657
Chicago/Turabian StyleMaupin, Oliver G., Andrew D. Baczewski, Peter J. Love, and Andrew J. Landahl. 2021. "Variational Quantum Chemistry Programs in JaqalPaq" Entropy 23, no. 6: 657. https://doi.org/10.3390/e23060657
APA StyleMaupin, O. G., Baczewski, A. D., Love, P. J., & Landahl, A. J. (2021). Variational Quantum Chemistry Programs in JaqalPaq. Entropy, 23(6), 657. https://doi.org/10.3390/e23060657