A Hybrid Method Based on Extreme Learning Machine and Wavelet Transform Denoising for Stock Prediction
Abstract
:1. Introduction
2. Methods
2.1. ELM
2.2. Wavelet Analysis
2.3. The Proposed Hybrid Method
3. Feature Engineering for Stock Trend Prediction
3.1. Labeling Method
3.2. Datasets
3.3. Statistical Metrics
4. Experiments
4.1. The Visualization of the DWT-Based Denoising
4.2. Testing of Stationarity
4.3. Labeling Process
4.4. Resluts of ELM and DELM
4.5. The DELM Method and Other Classification Algorithms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Full Name | Description |
---|---|---|
ELM | Extreme Learning Machine | Extreme learning machine model. |
CWT | Continuous wavelet transform | Wavelet transform. |
DWT | Discrete wavelet transform | Wavelet transform. |
DELM | Denoised ELM | ELM model trained based on the denoised data. |
LSTM | Long Short-Term Memory | Classifier of comparative experiment |
RNN | Recurrent Neural Network | Classifier of comparative experiment |
KNN | k-Nearest Neighbors | Classifier of comparative experiment |
LR | Logistic Regression | Classifier of comparative experiment |
RF | Random Forest | Classifier of comparative experiment |
DT | Decision Tree | Classifier of comparative experiment |
GBT | Gradient Boosting | Classifier of comparative experiment |
ABT | AdaBoost | Classifier of comparative experiment |
NB | Naive Bayes | Classifier of comparative experiment |
LDA | Linear Discriminant Analysis | Classifier of comparative experiment |
QDA | Quadratic discriminant analysis | Classifier of comparative experiment |
SVC | Support Vector Machine classifier | Classifier of comparative experiment |
RBF | Radial Basis Function | Activation function |
Acc | Accuracy | Statistical Metric |
R | Recall | Statistical Metric |
P | Precision | Statistical Metric |
F1 | F1 score | Statistical Metric |
AUC | Area under the Curve | Statistical Metric |
Code | Training PN | Training NN | PN% | Validation PN | Validation NN | PN% | Test PN | Test NN | PN% |
---|---|---|---|---|---|---|---|---|---|
000001 | 1460 | 1802 | 0.45 | 402 | 297 | 0.58 | 347 | 352 | 0.50 |
000005 | 1479 | 1584 | 0.48 | 259 | 397 | 0.39 | 301 | 356 | 0.46 |
000007 | 1586 | 1292 | 0.55 | 289 | 328 | 0.47 | 270 | 347 | 0.44 |
000012 | 1652 | 1643 | 0.50 | 403 | 303 | 0.57 | 325 | 382 | 0.46 |
000014 | 1604 | 1659 | 0.49 | 354 | 345 | 0.51 | 322 | 378 | 0.46 |
000025 | 1743 | 1542 | 0.53 | 239 | 465 | 0.34 | 284 | 421 | 0.40 |
000026 | 1788 | 1517 | 0.54 | 428 | 280 | 0.60 | 343 | 366 | 0.48 |
000031 | 1624 | 1544 | 0.51 | 308 | 371 | 0.45 | 322 | 357 | 0.47 |
000032 | 1729 | 1418 | 0.55 | 338 | 336 | 0.50 | 372 | 303 | 0.55 |
000048 | 1607 | 1593 | 0.50 | 330 | 356 | 0.48 | 304 | 382 | 0.44 |
000050 | 1603 | 1572 | 0.50 | 378 | 302 | 0.56 | 365 | 316 | 0.54 |
000055 | 1754 | 1566 | 0.53 | 341 | 371 | 0.48 | 249 | 463 | 0.35 |
000056 | 1579 | 1587 | 0.50 | 338 | 341 | 0.50 | 293 | 386 | 0.43 |
000061 | 1533 | 1639 | 0.48 | 339 | 341 | 0.50 | 311 | 369 | 0.46 |
000065 | 1702 | 1530 | 0.53 | 391 | 302 | 0.56 | 311 | 382 | 0.45 |
000068 | 1531 | 1406 | 0.52 | 269 | 360 | 0.43 | 233 | 397 | 0.37 |
000090 | 1580 | 1701 | 0.48 | 368 | 335 | 0.52 | 344 | 360 | 0.49 |
000150 | 1578 | 1482 | 0.52 | 300 | 356 | 0.46 | 220 | 436 | 0.34 |
000151 | 1788 | 1551 | 0.54 | 337 | 378 | 0.47 | 373 | 343 | 0.52 |
000155 | 1583 | 1333 | 0.54 | 360 | 265 | 0.58 | 279 | 346 | 0.45 |
000158 | 1708 | 1561 | 0.52 | 366 | 334 | 0.52 | 341 | 360 | 0.49 |
000402 | 1690 | 1630 | 0.51 | 404 | 308 | 0.57 | 363 | 349 | 0.51 |
000404 | 1682 | 1624 | 0.51 | 423 | 286 | 0.60 | 328 | 381 | 0.46 |
000411 | 1720 | 1332 | 0.56 | 320 | 334 | 0.49 | 339 | 315 | 0.52 |
000420 | 1816 | 1481 | 0.55 | 396 | 310 | 0.56 | 283 | 424 | 0.40 |
000422 | 1762 | 1516 | 0.54 | 374 | 329 | 0.53 | 407 | 296 | 0.58 |
000430 | 1686 | 1486 | 0.53 | 370 | 310 | 0.54 | 358 | 322 | 0.53 |
000507 | 1677 | 1625 | 0.51 | 405 | 303 | 0.57 | 347 | 361 | 0.49 |
000509 | 1557 | 1425 | 0.52 | 311 | 328 | 0.49 | 255 | 384 | 0.40 |
000519 | 1591 | 1588 | 0.50 | 318 | 363 | 0.47 | 364 | 318 | 0.53 |
000520 | 1411 | 1445 | 0.49 | 189 | 423 | 0.31 | 293 | 319 | 0.48 |
000523 | 1777 | 1457 | 0.55 | 344 | 349 | 0.50 | 267 | 426 | 0.39 |
000524 | 1739 | 1469 | 0.54 | 337 | 351 | 0.49 | 345 | 343 | 0.50 |
000526 | 1450 | 1504 | 0.49 | 317 | 316 | 0.50 | 324 | 309 | 0.51 |
000530 | 1728 | 1567 | 0.52 | 371 | 335 | 0.53 | 329 | 378 | 0.47 |
000531 | 1682 | 1557 | 0.52 | 322 | 372 | 0.46 | 341 | 354 | 0.49 |
000532 | 1730 | 1532 | 0.53 | 342 | 357 | 0.49 | 365 | 334 | 0.52 |
Stock Code | Test Statistic | p Value | Used Lag | N of Observations |
---|---|---|---|---|
000001 | −11.40 | 7.74 × 10−21 | 17 | 4642 |
000005 | −10.77 | 2.37 × 10−19 | 25 | 4350 |
000007 | −14.24 | 1.52 × 10−26 | 11 | 4100 |
000012 | −15.30 | 4.32 × 10−28 | 11 | 4696 |
000014 | −13.10 | 1.71 × 10−24 | 22 | 4639 |
000025 | −9.56 | 2.48 × 10−16 | 31 | 4662 |
000026 | −12.87 | 4.93 × 10−24 | 14 | 4707 |
000031 | −10.32 | 3.00 × 10−18 | 31 | 4494 |
000032 | −10.68 | 3.98 × 10−19 | 32 | 4463 |
000048 | −7.85 | 5.75 × 10−12 | 32 | 4539 |
000050 | −10.04 | 1.55 × 10−17 | 32 | 4503 |
000055 | −10.91 | 1.11 × 10−19 | 32 | 4711 |
000056 | −14.87 | 1.64 × 10−27 | 11 | 4512 |
000061 | −14.81 | 2.02 × 10−27 | 13 | 4518 |
000065 | −9.71 | 1.03 × 10−16 | 32 | 4585 |
000068 | −14.96 | 1.26 × 10−27 | 12 | 4183 |
000090 | −9.55 | 2.55 × 10−16 | 28 | 4659 |
000150 | −9.68 | 1.23 × 10−16 | 26 | 4345 |
000151 | −9.70 | 1.06 × 10−16 | 32 | 4737 |
000155 | −13.01 | 2.59 × 10−24 | 15 | 4150 |
000158 | −14.13 | 2.33 × 10−26 | 17 | 4652 |
000402 | −10.29 | 3.67 × 10−18 | 32 | 4711 |
000404 | −9.90 | 3.30 × 10−17 | 32 | 4691 |
000411 | −10.43 | 1.65 × 10−18 | 31 | 4328 |
000420 | −9.56 | 2.48 × 10−16 | 31 | 4678 |
000422 | −9.04 | 5.06 × 10−15 | 31 | 4652 |
000430 | −10.57 | 7.22 × 10−19 | 29 | 4502 |
000507 | −14.42 | 7.95 × 10−27 | 13 | 4704 |
000509 | −7.83 | 6.45 × 10−12 | 31 | 4228 |
000519 | −14.87 | 1.64 × 10−27 | 10 | 4531 |
000520 | −16.16 | 4.50 × 10−29 | 12 | 4067 |
000523 | −10.40 | 1.93 × 10−18 | 31 | 4588 |
000524 | −12.33 | 6.40 × 10−23 | 16 | 4567 |
000526 | −9.02 | 5.79 × 10−15 | 31 | 4188 |
000530 | −15.52 | 2.26 × 10−28 | 18 | 4689 |
000531 | −8.81 | 2.04 × 10−14 | 32 | 4595 |
000532 | −10.59 | 6.70 × 10−19 | 30 | 4629 |
References
- Ding, G.; Qin, L. Study on the prediction of stock price based on the associated network model of LSTM. Int. J. Mach. Learn. Cybern. 2020, 11, 1307–1317. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, H.; Mehmood, I.; Maqsood, M.; Yasir, M.; Afzal, S.; Aadil, F.; Selim, K.; Muhammad, K. A local and global event sentiment based efficient stock exchange forecasting using deep learning. Int. J. Inf. Manag. 2020, 50, 432–451. [Google Scholar] [CrossRef]
- Carta, S.; Corriga, A.; Ferreira, A.; Podda, A.S.; Recupero, D.R. A multi-layer and multi-ensemble stock trader using deep learning and deep reinforcement learning. Appl. Intell. 2021, 51, 889–905. [Google Scholar] [CrossRef]
- Domingos, S.D.O.; de Oliveira, J.F.; de Mattos Neto, P.S. An intelligent hybridization of ARIMA with machine learning models for time series forecasting. Knowl. Based Syst. 2019, 175, 72–86. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Jiang, X.; Chen, X.; Chen, L. The long-term extreme price risk measure of portfolio in inventory financing: An application to dynamic impawn rate interval. Complexity 2015, 20, 17–34. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48. [Google Scholar] [CrossRef]
- Huang, G.B.; Chen, L. Convex incremental extreme learning machine. Neurocomputing 2007, 70, 3056–3062. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 2011, 42, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhuang, Z.; Liu, Y.; Liu, Y.; Zhang, X. Defect classification of green plums based on deep learning. Sensors 2020, 20, 6993. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Y.; Qing, Y.; Huang, G.B. Learning local discriminative representations via extreme learning machine for machine fault diagnosis. Neurocomputing 2020, 409, 275–285. [Google Scholar] [CrossRef]
- Ouyang, T.; Wang, C.; Yu, Z.; Stach, R.; Mizaikoff, B.; Huang, G.B.; Wang, Q.J. NOx measurements in vehicle exhaust using advanced deep ELM networks. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Nayak, S.C.; Misra, B.B. Extreme learning with chemical reaction optimization for stock volatility prediction. Financ. Innov. 2020, 6, 1–23. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, W.; Mu, Y. Variances-constrained weighted extreme learning machine for imbalanced classification. Neurocomputing 2020, 403, 45–52. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Zhang, T.; Bai, J.; Hou, M. A deep residual compensation extreme learning machine and applications. J. Forecast. 2020, 39, 986–999. [Google Scholar] [CrossRef]
- Huang, G.; Song, S.; Gupta, J.N.; Wu, C. Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 2014, 44, 2405–2417. [Google Scholar] [CrossRef]
- Albadra MA, A.; Tiuna, S. Extreme learning machine: A review. Int. J. Appl. Eng. Res. 2017, 12, 4610–4623. [Google Scholar]
- Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R. Extreme learning machine: Algorithm, theory and applications. Artif. Intell. Rev. 2015, 44, 103–115. [Google Scholar] [CrossRef]
- Alade, O.A.; Selamat, A.; Sallehuddin, R. A review of advances in extreme learning machine techniques and its applications. In Proceedings of the International Conference of Reliable Information and Communication Technology, Johor Bahru, Malaysia, 23–24 April 2017; Springer: Cham, Switzerland, 2017; pp. 885–895. [Google Scholar] [CrossRef]
- Alaba, P.A.; Popoola, S.I.; Olatomiwa, L.; Akanle, M.B.; Ohunakin, O.S.; Adetiba, E.; Alex, A.A.; Daud, W.M.A.W. Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend. Neurocomputing 2019, 350, 70–90. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Cui, D.; Mao, S.; Huang, G.B. R-ELMNet: Regularized extreme learning machine network. Neural Netw. 2020, 130, 49–59. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, Y.; Li, Y.; Huang, G.B. Unsupervised feature selection based extreme learning machine for clustering. Neurocomputing 2020, 386, 198–207. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, J.; Li, Y.; Qing, Y.; Huang, G.B. Clustering via adaptive and locality-constrained graph learning and unsupervised ELM. Neurocomputing 2020, 401, 224–235. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Y.; Chen, J.; Jia, X.; Huang, G.B. ELM embedded discriminative dictionary learning for image classification. Neural Netw. 2020, 123, 331–342. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Y.; Liu, T.; Jia, X.; Huang, G.B. Simultaneously learning affinity matrix and data representations for machine fault diagnosis. Neural Netw. 2020, 122, 395–406. [Google Scholar] [CrossRef]
- Das, S.P.; Padhy, S. A novel hybrid model using teaching–learning-based optimization and a support vector machine for commodity futures index forecasting. Int. J. Mach. Learn. Cybern. 2018, 9, 97–111. [Google Scholar] [CrossRef]
- Wang, H.B.; Liu, X.; Song, P.; Tu, X.Y. Sensitive time series prediction using extreme learning machine. Int. J. Mach. Learn. Cybern. 2019, 10, 3371–3386. [Google Scholar] [CrossRef]
- Yang, L.; Song, S.; Li, S.; Chen, Y.; Huang, G. Graph embedding-based dimension reduction with extreme learning machine. IEEE Trans. Syst. Man Cybern. Syst. 2019, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Xie, H.; Wang, R.; Cai, Y.; Cao, J.; Wang, F.; Min, X.; Deng, X. Empirical analysis: Stock market prediction via extreme learning machine. Neural Comput. Appl. 2016, 27, 67–78. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Rao, Q.; Li, K.; Zhang, H. Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for stock prediction. Soft Comput. 2017, 21, 3193–3205. [Google Scholar] [CrossRef]
- Jiang, M.; Jia, L.; Chen, Z.; Chen, W. The two-stage machine learning ensemble models for stock price prediction by combining mode decomposition, extreme learning machine and improved harmony search algorithm. Ann. Oper. Res. 2020, 1–33. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, T.; Wu, J.; Du, X.; Chen, K. Multistep-ahead stock price forecasting based on secondary decomposition technique and extreme learning machine optimized by the differential evolution algorithm. Math. Probl. Eng. 2020, 1–13. [Google Scholar] [CrossRef]
- Weng, F.; Chen, Y.; Wang, Z.; Hou, M.; Luo, J.; Tian, Z. Gold price forecasting research based on an improved online extreme learning machine algorithm. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4101–4111. [Google Scholar] [CrossRef]
- Jiang, F.; He, J.; Zeng, Z. Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting bulk commodity futures prices. Sci. China Inf. Sci. 2019, 62, 70204. [Google Scholar] [CrossRef] [Green Version]
- Khuwaja, P.; Khowaja, S.A.; Khoso, I.; Lashari, I.A. Prediction of stock movement using phase space reconstruction and extreme learning machines. J. Exp. Theor. Artif. Intell. 2020, 32, 59–79. [Google Scholar] [CrossRef]
- Jeyakarthic, M.; Punitha, S. An effective stock market direction prediction model using water wave optimization with multi-kernel extreme learning machine. IIOAB J. 2020, 11, 103–109. [Google Scholar]
- Xu, H.; Wang, M.; Jiang, S.; Yang, W. Carbon price forecasting with complex network and extreme learning machine. Phys. A 2020, 545, 122830. [Google Scholar] [CrossRef]
- Wang, K.; Pei, H.; Cao, J.; Zhong, P. Robust regularized extreme learning machine for regression with non-convex loss function via DC program. J. Frankl. Inst. 2020, 357, 7069–7091. [Google Scholar] [CrossRef]
- Guo, W. Robust adaptive online sequential extreme learning machine for predicting nonstationary data streams with outliers. J. Algorithms Comput. Technol. 2019, 13, 1748302619895421. [Google Scholar] [CrossRef]
- Hu, Y.; Valera, H.G.A.; Oxley, L. Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel framework. Financ. Res. Lett. 2019, 31, 138–145. [Google Scholar] [CrossRef]
- Kristoufek, L. On Bitcoin markets (in) efficiency and its evolution. Phys. A 2018, 503, 257–262. [Google Scholar] [CrossRef]
- Liu, B.; Xia, X.; Xiao, W. Public information content and market information efficiency: A comparison between China and the US. China Econ. Rev. 2020, 60, 101405. [Google Scholar] [CrossRef]
- Han, C.; Wang, Y.; Xu, Y. Efficiency and multifractality analysis of the Chinese stock market: Evidence from stock indices before and after the 2015 stock market crash. Sustainability 2019, 11, 1699. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.W.; Chen, H.C.; Chan, H.L. A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput. Methods Programs Biomed. 2006, 82, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.T.; Wang, X.Y.; Jin, X.B.; Zhao, Z.Y.; Zhang, B.H. A neuron-based kalman filter with nonlinear autoregressive model. Sensors 2020, 20, 299. [Google Scholar] [CrossRef] [Green Version]
- Manju, B.R.; Sneha, M.R. ECG denoising using wiener filter and kalman filter. Procedia Comput. Sci. 2020, 171, 273–281. [Google Scholar] [CrossRef]
- Mustafi, A.; Ghorai, S.K. A novel blind source separation technique using fractional Fourier transform for denoising medical images. Optik 2013, 124, 265–271. [Google Scholar] [CrossRef]
- Ma, H.; Yan, L.; Xia, Y.; Fu, M. Introduction to Kalman Filtering; Springer: Singapore, 2020; pp. 3–9. [Google Scholar] [CrossRef]
- Kato, K.; Takahashi, K.; Mizuguchi, N.; Ushiba, J. Online detection of amplitude modulation of motor-related EEG desynchronization using a lock-in amplifier: Comparison with a fast Fourier transform, a continuous wavelet transform, and an autoregressive algorithm. J. Neurosci. Methods 2018, 293, 289–298. [Google Scholar] [CrossRef]
- Chen, H.; Xu, W.; Broderick, N.; Han, J. An adaptive denoising method for Raman spectroscopy based on lifting wavelet transform. J. Raman Spectrosc. 2018, 49, 1529–1539. [Google Scholar] [CrossRef]
- Liu, T.; Wei, H.; Zhang, C.; Zhang, K. Time series forecasting based on wavelet decomposition and feature extraction. Neural Comput. Appl. 2017, 28, 183–195. [Google Scholar] [CrossRef]
- Xu, M.; Han, M.; Lin, H. Wavelet-denoising multiple echo state networks for multivariate time series prediction. Inf. Sci. 2018, 465, 439–458. [Google Scholar] [CrossRef]
- Bao, W.; Yue, J.; Rao, Y. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 2017, 12, e0180944. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, J.; Liu, S. A new algorithm of stock data mining in Internet of Multimedia Things. J. Supercomput. 2020, 76, 2374–2389. [Google Scholar] [CrossRef]
- Lahmiri, S. Randomness in denoised stock returns: The case of Moroccan family business companies. Phys. Lett. A 2018, 382, 554–560. [Google Scholar] [CrossRef]
- Li, X.; Tang, P. Stock index prediction based on wavelet transform and FCD-MLGRU. J. Forecast. 2020, 39, 1229–1237. [Google Scholar] [CrossRef]
- Wen, S.; An, H.; Huang, S.; Liu, X. Dynamic impact of China’s stock market on the international commodity market. Resour. Policy 2019, 61, 564–571. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Bakar MA, A.; Ariff, N.M. Analysis of relationships between Malaysia’s Islamic and conventional stock markets using wavelet techniques. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2111, p. 020018. [Google Scholar] [CrossRef]
- Yang, Z.; Yi, X.; Zhu, A. A mixed model based on wavelet transform and support vector regression to forecast stock price. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 27–29 June 2020; pp. 420–426. [Google Scholar] [CrossRef]
- Xu, L.; Chhim, B.; Zheng, Y.; Nojima, Y. Stacked deep learning structure with bidirectional long-short term memory for stock market prediction. In Proceedings of the International Conference on Neural Computing for Advanced Applications, Shenzhen, China, 3–5 July 2020; Springer: Singapore, 2020; pp. 447–460. [Google Scholar] [CrossRef]
- He, F.; He, X. A continuous differentiable wavelet shrinkage function for economic data denoising. Comput. Econ. 2019, 54, 729–761. [Google Scholar] [CrossRef]
- Yu, M.; Yu, K.; Han, T.; Wan, Y.; Zhao, D. Research on application of fractional calculus in signal analysis and processing of stock market. Chaos Solitons Fractals 2020, 131, 109468. [Google Scholar] [CrossRef]
- Faraz, H.; Khaloozadeh, H. Multi-step-ahead stock market prediction based on least squares generative adversarial network. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Faraz, M.; Khaloozadeh, H.; Abbasi, M. Stock market prediction-by-prediction based on autoencoder long short-term memory networks. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, Y.T.; Lai, W.N.; Sun, E.W. Jump detection and noise separation by a singular wavelet method for predictive analytics of high-frequency data. Comput. Econ. 2019, 54, 809–844. [Google Scholar] [CrossRef]
- Li, W.; Kong, D.; Wu, J. A novel hybrid model based on extreme learning machine, k-nearest neighbor regression and wavelet denoising applied to short-term electric load forecasting. Energies 2017, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Štifanić, D.; Musulin, J.; Miočević, A.; Baressi Šegota, S.; Šubić, R.; Car, Z. Impact of COVID-19 on forecasting stock prices: An integration of stationary wavelet transform and bidirectional long short-term memory. Complexity 2020, 2020. [Google Scholar] [CrossRef]
- Jiang, Z.; Yoon, S.M. Dynamic co-movement between oil and stock markets in oil-importing and oil-exporting countries: Two types of wavelet analysis. Energy Econ. 2020, 90, 104835. [Google Scholar] [CrossRef]
- Dai, Z.; Zhu, H.; Kang, J. New technical indicators and stock returns predictability. Int. Rev. Econ. Financ. 2020, 71, 127–142. [Google Scholar] [CrossRef]
- Al-Yahyaee, K.H.; Mensi, W.; Rehman, M.U.; Vo, X.V.; Kang, S.H. Do Islamic stocks outperform conventional stock sectors during normal and crisis periods? Extreme co-movements and portfolio management analysis. Pac. Basin Financ. J. 2020, 62, 101385. [Google Scholar] [CrossRef]
- Asafo-Adjei, E.; Agyapong, D.; Agyei, S.K.; Frimpong, S.; Djimatey, R.; Adam, A.M. Economic policy uncertainty and stock returns of Africa: A wavelet coherence analysis. Discret. Dyn. Nat. Soc. 2020, 2020. [Google Scholar] [CrossRef]
- Alshammari, T.S.; Ismail, M.T.; Al-Wadi, S.; Saleh, M.H.; Jaber, J.J. Modeling and forecasting saudi stock market volatility using wavelet methods. J. Asian Financ. Econ. Bus. 2020, 7, 83–93. [Google Scholar] [CrossRef]
- Mariani, M.C.; Bhuiyan MA, M.; Tweneboah, O.K.; Beccar-Varela, M.P.; Florescu, I. Analysis of stock market data by using Dynamic Fourier and Wavelets techniques. Phys. A 2020, 537, 122785. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, J.; Chen, J. Detecting stock market turning points using wavelet leaders method. Phys. A 2020, 565, 125560. [Google Scholar] [CrossRef]
- Bouri, E.; Shahzad, S.J.; Roubaud, D.; Kristoufek, L.; Lucey, B. Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. Q. Rev. Econ. Financ. 2020, 77, 156–164. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Kuppili, V.; Tripathi, D.; Reddy Edla, D. Credit score classification using spiking extreme learning machine. Comput. Intell. 2020, 36, 402–426. [Google Scholar] [CrossRef]
- Zhang, W.B.; Ji, H.B. Fuzzy extreme learning machine for classification. Electron. Lett. 2013, 49, 448–450. [Google Scholar] [CrossRef]
- Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef] [Green Version]
- Sifuzzaman, M.; Islam, M.R.; Ali, M.Z. Application of wavelet transform and its advantages compared to Fourier transform. J. Phys. Sci. 2009, 13, 121–134. [Google Scholar]
- Rhif, M.; Ben Abbes, A.; Farah, I.R.; Martínez, B.; Sang, Y. Wavelet transform application for/in non-stationary time-series analysis: A review. Appl. Sci. 2019, 9, 1345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D. Wavelet transform. In Fundamentals of Image Data Mining; Springer: Cham, Switzerland, 2019; pp. 35–44. [Google Scholar]
- Altunkaynak, A.; Ozger, M. Comparison of discrete and continuous wavelet–multilayer perceptron methods for daily precipitation prediction. J. Hydrol. Eng. 2016, 21, 04016014. [Google Scholar] [CrossRef]
- De Faria, M.L.L.; Cugnasca, C.E.; Amazonas, J.R.A. Insights into IoT data and an innovative DWT-based technique to denoise sensor signals. IEEE Sens. J. 2017, 18, 237–247. [Google Scholar] [CrossRef]
- Chen, D.; Wan, S.; Xiang, J.; Bao, F.S. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS ONE 2017, 12, e0173138. [Google Scholar] [CrossRef] [Green Version]
- Hajiabotorabi, Z.; Kazemi, A.; Samavati, F.F.; Ghaini FM, M. Improving DWT-RNN model via B-spline wavelet multiresolution to forecast a high-frequency time series. Expert Syst. Appl. 2019, 138, 112842. [Google Scholar] [CrossRef]
- Wu, D.; Wang, X.; Su, J.; Tang, B.; Wu, S. A labeling method for financial time series prediction based on trends. Entropy 2020, 22, 1162. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Lu, Z.; Cui, L. Deep learning-based feature engineering for stock price movement prediction. Knowl. Based Syst. 2019, 164, 163–173. [Google Scholar] [CrossRef]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Classification Evaluation; Nature Publishing Group: Washington, DC, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Lejeune, M.A. A distributionally robust area under curve maximization model. Oper. Res. Lett. 2020, 48, 460–466. [Google Scholar] [CrossRef]
- Lever, J. Classification evaluation: It is important to understand both what a classification metric expresses and what it hides. Nat. Methods 2016, 13, 603–605. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Narkhede, S. Understanding auc-roc curve. Towards Data Sci. 2018, 26, 220–227. [Google Scholar]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Moskowitz, T.J.; Ooi, Y.H.; Pedersen, L.H. Time series momentum. J. Financ. Econ. 2012, 104, 228–250. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, R. Augmented Dickey Fuller Test. 2011. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1911068 (accessed on 27 June 2017).
- Ajewole, K.P.; Adejuwon, S.O.; Jemilohun, V.G. Test for stationarity on inflation rates in Nigeria using augmented dickey fuller test and Phillips-persons test. J. Math. 2020, 16, 11–14. [Google Scholar]
- Akusok, A.; Björk, K.M.; Miche, Y.; Lendasse, A. High-performance extreme learning machines: A complete toolbox for big data applications. IEEE Access 2015, 3, 1011–1025. [Google Scholar] [CrossRef]
- Ketkar, N. Introduction to pytorch. In Deep Learning with Python; Apress: Berkeley, CA, USA, 2017; pp. 195–208. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, P.; Prettenhofer, R.; Weiss, V.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Name | Input Neurons | Hidden Neurons | Activation Function | Hidden Layers | Output Neurons |
---|---|---|---|---|---|
First hidden layer | 11 | 50 | Sigmoid | 1 | 50 |
Second hidden layer | 50 | 50 | RBF | 1 | 1 |
Metrics | Formula | Evaluation Focus |
---|---|---|
Accuracy (Acc) | The ratio of correctly classified samples to total samples. | |
Recall (R) | Proportion of correctly classified results among the true positive samples. | |
Precision (P) | Proportion of correctly classified results among the results predicted to be positive samples. | |
F1_score (F1) | The harmonic average of precision and recall, and its value is closer to the smaller value of Precision and Recall. | |
AUC | The area under the Roc curve is between 0.1 and 1. Area under the curve (AUC) as a value can intuitively evaluate the quality of the classifier. The larger the value, the better the results will be. |
Code | ELM | DELM | ||
---|---|---|---|---|
Validation Acc | Test Acc | Validation Acc | Test Acc | |
000001 | 0.5794 | 0.6638 | 0.7096 | 0.6953 |
000005 | 0.6311 | 0.6499 | 0.7241 | 0.6941 |
000007 | 0.6062 | 0.5770 | 0.6726 | 0.6483 |
000012 | 0.6275 | 0.6506 | 0.6728 | 0.6973 |
000014 | 0.6452 | 0.6486 | 0.6166 | 0.7000 |
000025 | 0.5156 | 0.6057 | 0.6662 | 0.6894 |
000026 | 0.6370 | 0.6276 | 0.6582 | 0.6996 |
000031 | 0.6568 | 0.6716 | 0.7128 | 0.7231 |
000032 | 0.6098 | 0.6400 | 0.6261 | 0.7037 |
000048 | 0.6224 | 0.6822 | 0.6254 | 0.6837 |
000050 | 0.5912 | 0.6197 | 0.6309 | 0.6814 |
000055 | 0.6433 | 0.6124 | 0.6713 | 0.6699 |
000056 | 0.6141 | 0.6318 | 0.6686 | 0.7025 |
000061 | 0.6088 | 0.6441 | 0.6618 | 0.6897 |
000065 | 0.6494 | 0.6320 | 0.6349 | 0.6912 |
000068 | 0.6502 | 0.6095 | 0.6836 | 0.6587 |
000090 | 0.5733 | 0.6619 | 0.6117 | 0.6903 |
000150 | 0.6433 | 0.6692 | 0.6799 | 0.7317 |
000151 | 0.6336 | 0.6508 | 0.6545 | 0.6732 |
000155 | 0.6512 | 0.6352 | 0.6608 | 0.6976 |
000158 | 0.6357 | 0.6519 | 0.6143 | 0.6790 |
000402 | 0.6306 | 0.6826 | 0.6306 | 0.6896 |
000404 | 0.6432 | 0.6700 | 0.6953 | 0.6953 |
000411 | 0.6040 | 0.6346 | 0.6437 | 0.7034 |
000420 | 0.6516 | 0.6238 | 0.6275 | 0.6436 |
000422 | 0.6700 | 0.6743 | 0.7226 | 0.6885 |
000430 | 0.6235 | 0.6882 | 0.6088 | 0.6941 |
000507 | 0.6172 | 0.6398 | 0.6554 | 0.6822 |
000509 | 0.6401 | 0.6369 | 0.6260 | 0.6870 |
000519 | 0.6417 | 0.6584 | 0.6681 | 0.6935 |
000520 | 0.6716 | 0.6225 | 0.7369 | 0.7565 |
000523 | 0.6508 | 0.6494 | 0.7215 | 0.7071 |
000524 | 0.6148 | 0.6555 | 0.6294 | 0.6846 |
000526 | 0.6288 | 0.6319 | 0.6209 | 0.6367 |
000530 | 0.6445 | 0.6436 | 0.6969 | 0.7440 |
000531 | 0.6614 | 0.6489 | 0.6369 | 0.6964 |
000532 | 0.6295 | 0.6524 | 0.6552 | 0.6609 |
Mean | 0.6283 | 0.6445 | 0.6603 | 0.6909 |
Code | ELM | DELM | ||
---|---|---|---|---|
Validation P | Test P | Validation P | Test P | |
000001 | 0.7547 | 0.7074 | 0.6987 | 0.7425 |
000005 | 0.5371 | 0.6524 | 0.4686 | 0.5909 |
000007 | 0.5558 | 0.5108 | 0.5955 | 0.6316 |
000012 | 0.7035 | 0.6523 | 0.7000 | 0.7380 |
000014 | 0.6743 | 0.6462 | 0.6481 | 0.6708 |
000025 | 0.3599 | 0.5072 | 0.4686 | 0.5693 |
000026 | 0.6879 | 0.5975 | 0.6781 | 0.6205 |
000031 | 0.6119 | 0.6678 | 0.6381 | 0.7120 |
000032 | 0.5926 | 0.6503 | 0.6355 | 0.7486 |
000048 | 0.6172 | 0.6629 | 0.6139 | 0.7273 |
000050 | 0.6437 | 0.6828 | 0.6638 | 0.7437 |
000055 | 0.6090 | 0.4638 | 0.6400 | 0.5248 |
000056 | 0.6250 | 0.5776 | 0.6317 | 0.6947 |
000061 | 0.6337 | 0.6273 | 0.5817 | 0.6061 |
000065 | 0.6796 | 0.5711 | 0.6402 | 0.7300 |
000068 | 0.5878 | 0.4749 | 0.6398 | 0.4868 |
000090 | 0.6076 | 0.6906 | 0.6349 | 0.7356 |
000150 | 0.5994 | 0.5052 | 0.6457 | 0.5000 |
000151 | 0.5895 | 0.6573 | 0.6250 | 0.5749 |
000155 | 0.6793 | 0.5710 | 0.6641 | 0.6045 |
000158 | 0.6384 | 0.6260 | 0.6239 | 0.7045 |
000402 | 0.6732 | 0.6952 | 0.6690 | 0.6580 |
000404 | 0.7310 | 0.6655 | 0.7546 | 0.5248 |
000411 | 0.5662 | 0.6111 | 0.6266 | 0.6332 |
000420 | 0.6569 | 0.5195 | 0.5862 | 0.4848 |
000422 | 0.6749 | 0.7236 | 0.7683 | 0.8235 |
000430 | 0.6319 | 0.6690 | 0.5429 | 0.6289 |
000507 | 0.6650 | 0.6411 | 0.7046 | 0.6062 |
000509 | 0.6160 | 0.5385 | 0.6098 | 0.5020 |
000519 | 0.6128 | 0.6825 | 0.6498 | 0.7782 |
000520 | 0.4700 | 0.6360 | 0.4350 | 0.7057 |
000523 | 0.6192 | 0.5319 | 0.7094 | 0.5525 |
000524 | 0.5849 | 0.6364 | 0.6166 | 0.7429 |
000526 | 0.6530 | 0.6608 | 0.6779 | 0.7254 |
000530 | 0.6493 | 0.6129 | 0.7642 | 0.7021 |
000531 | 0.6218 | 0.6456 | 0.5867 | 0.6810 |
000532 | 0.6056 | 0.6580 | 0.6376 | 0.6676 |
Mean | 0.6222 | 0.6170 | 0.6345 | 0.6506 |
Code | ELM | DELM | ||
---|---|---|---|---|
Validation R | Test R | Validation R | Test R | |
000001 | 0.3980 | 0.5504 | 0.5604 | 0.6201 |
000005 | 0.4749 | 0.5050 | 0.4824 | 0.3467 |
000007 | 0.7924 | 0.7852 | 0.7050 | 0.6755 |
000012 | 0.6005 | 0.5138 | 0.6485 | 0.5831 |
000014 | 0.5791 | 0.5217 | 0.5029 | 0.5514 |
000025 | 0.5481 | 0.7394 | 0.5091 | 0.4656 |
000026 | 0.7313 | 0.7055 | 0.7132 | 0.6573 |
000031 | 0.6656 | 0.6118 | 0.7128 | 0.6897 |
000032 | 0.7101 | 0.7500 | 0.6018 | 0.7048 |
000048 | 0.5667 | 0.5757 | 0.5706 | 0.5994 |
000050 | 0.5926 | 0.5425 | 0.6403 | 0.5852 |
000055 | 0.7126 | 0.6948 | 0.6747 | 0.5944 |
000056 | 0.5621 | 0.5461 | 0.6461 | 0.5414 |
000061 | 0.5103 | 0.5466 | 0.6357 | 0.6569 |
000065 | 0.7161 | 0.7235 | 0.6420 | 0.5356 |
000068 | 0.6097 | 0.5279 | 0.6140 | 0.5311 |
000090 | 0.5217 | 0.5581 | 0.5437 | 0.5630 |
000150 | 0.6633 | 0.6682 | 0.6544 | 0.6364 |
000151 | 0.7329 | 0.6890 | 0.7205 | 0.7932 |
000155 | 0.7472 | 0.7348 | 0.7581 | 0.8137 |
000158 | 0.6995 | 0.7067 | 0.5812 | 0.5959 |
000402 | 0.6782 | 0.6722 | 0.7066 | 0.7825 |
000404 | 0.6359 | 0.5762 | 0.6993 | 0.6883 |
000411 | 0.8156 | 0.8112 | 0.7485 | 0.7979 |
000420 | 0.7929 | 0.7986 | 0.7930 | 0.8703 |
000422 | 0.7326 | 0.7076 | 0.6931 | 0.5255 |
000430 | 0.7378 | 0.8073 | 0.7550 | 0.8286 |
000507 | 0.6667 | 0.6023 | 0.7046 | 0.6701 |
000509 | 0.6913 | 0.6314 | 0.6431 | 0.6318 |
000519 | 0.6321 | 0.6731 | 0.5825 | 0.6129 |
000520 | 0.4974 | 0.4949 | 0.6444 | 0.8430 |
000523 | 0.7703 | 0.7491 | 0.6942 | 0.6174 |
000524 | 0.7359 | 0.7304 | 0.6073 | 0.5417 |
000526 | 0.5521 | 0.5772 | 0.5403 | 0.5895 |
000530 | 0.7035 | 0.6353 | 0.7057 | 0.6856 |
000531 | 0.6894 | 0.6305 | 0.6506 | 0.7033 |
000532 | 0.6959 | 0.6959 | 0.6986 | 0.6657 |
Mean | 0.6530 | 0.6484 | 0.6482 | 0.6431 |
Code | ELM | DELM | ||
---|---|---|---|---|
Validation F1 | Test F1 | Validation F1 | Test F1 | |
000001 | 0.5212 | 0.6191 | 0.6220 | 0.6758 |
000005 | 0.5041 | 0.5693 | 0.4754 | 0.4370 |
000007 | 0.6534 | 0.6190 | 0.6456 | 0.6528 |
000012 | 0.6479 | 0.5749 | 0.6733 | 0.6515 |
000014 | 0.6231 | 0.5773 | 0.5663 | 0.6053 |
000025 | 0.4345 | 0.6017 | 0.4880 | 0.5122 |
000026 | 0.7089 | 0.6471 | 0.6952 | 0.6384 |
000031 | 0.6376 | 0.6386 | 0.6734 | 0.7006 |
000032 | 0.6460 | 0.6966 | 0.6182 | 0.7260 |
000048 | 0.5908 | 0.6162 | 0.5914 | 0.6572 |
000050 | 0.6171 | 0.6046 | 0.6519 | 0.6550 |
000055 | 0.6568 | 0.5563 | 0.6569 | 0.5574 |
000056 | 0.5919 | 0.5614 | 0.6388 | 0.6085 |
000061 | 0.5654 | 0.5842 | 0.6075 | 0.6305 |
000065 | 0.6974 | 0.6383 | 0.6411 | 0.6179 |
000068 | 0.5985 | 0.5000 | 0.6266 | 0.5080 |
000090 | 0.5614 | 0.6174 | 0.5857 | 0.6379 |
000150 | 0.6297 | 0.5753 | 0.6500 | 0.5600 |
000151 | 0.6534 | 0.6728 | 0.6693 | 0.6667 |
000155 | 0.7116 | 0.6426 | 0.7080 | 0.6937 |
000158 | 0.6675 | 0.6639 | 0.6018 | 0.6457 |
000402 | 0.6757 | 0.6835 | 0.6873 | 0.7148 |
000404 | 0.6802 | 0.6176 | 0.7259 | 0.5955 |
000411 | 0.6684 | 0.6971 | 0.6821 | 0.7061 |
000420 | 0.7185 | 0.6295 | 0.6741 | 0.6228 |
000422 | 0.7026 | 0.7155 | 0.7288 | 0.6416 |
000430 | 0.6808 | 0.7316 | 0.6316 | 0.7151 |
000507 | 0.6658 | 0.6211 | 0.7046 | 0.6365 |
000509 | 0.6515 | 0.5812 | 0.6260 | 0.5595 |
000519 | 0.6223 | 0.6777 | 0.6143 | 0.6857 |
000520 | 0.4833 | 0.5566 | 0.5194 | 0.7683 |
000523 | 0.6865 | 0.6221 | 0.7017 | 0.5832 |
000524 | 0.6518 | 0.6802 | 0.6119 | 0.6265 |
000526 | 0.5983 | 0.6161 | 0.6013 | 0.6505 |
000530 | 0.6753 | 0.6239 | 0.7338 | 0.6937 |
000531 | 0.6539 | 0.6380 | 0.6170 | 0.6920 |
000532 | 0.6476 | 0.6764 | 0.6667 | 0.6667 |
Mean | 0.6319 | 0.6255 | 0.6382 | 0.6377 |
Code | ELM | DELM | ||
---|---|---|---|---|
Validation AUC | Test AUC | Validation AUC | Test AUC | |
000001 | 0.6115 | 0.6630 | 0.6904 | 0.6972 |
000005 | 0.6040 | 0.6387 | 0.6455 | 0.6108 |
000007 | 0.6172 | 0.6001 | 0.6769 | 0.6489 |
000012 | 0.6319 | 0.6404 | 0.6738 | 0.6940 |
000014 | 0.6461 | 0.6392 | 0.6161 | 0.6789 |
000025 | 0.5235 | 0.6274 | 0.6233 | 0.6378 |
000026 | 0.6121 | 0.6301 | 0.6525 | 0.6927 |
000031 | 0.6576 | 0.6686 | 0.7128 | 0.7212 |
000032 | 0.6095 | 0.6275 | 0.6263 | 0.7036 |
000048 | 0.6204 | 0.6713 | 0.6228 | 0.6847 |
000050 | 0.5910 | 0.6257 | 0.6301 | 0.6847 |
000055 | 0.6461 | 0.6314 | 0.6716 | 0.6525 |
000056 | 0.6139 | 0.6215 | 0.6667 | 0.6820 |
000061 | 0.6085 | 0.6365 | 0.6579 | 0.6844 |
000065 | 0.6395 | 0.6405 | 0.6348 | 0.6813 |
000068 | 0.6451 | 0.5927 | 0.6753 | 0.6266 |
000090 | 0.5758 | 0.6596 | 0.6123 | 0.6865 |
000150 | 0.6449 | 0.6690 | 0.6777 | 0.7015 |
000151 | 0.6390 | 0.6492 | 0.6564 | 0.6911 |
000155 | 0.6340 | 0.6448 | 0.6518 | 0.7135 |
000158 | 0.6327 | 0.6534 | 0.6144 | 0.6775 |
000402 | 0.6232 | 0.6828 | 0.6173 | 0.6901 |
000404 | 0.6449 | 0.6634 | 0.6946 | 0.6935 |
000411 | 0.6084 | 0.6278 | 0.6414 | 0.7125 |
000420 | 0.6319 | 0.6528 | 0.6320 | 0.6990 |
000422 | 0.6657 | 0.6680 | 0.7250 | 0.6991 |
000430 | 0.6125 | 0.6816 | 0.6235 | 0.7033 |
000507 | 0.6089 | 0.6391 | 0.6455 | 0.6804 |
000509 | 0.6414 | 0.6360 | 0.6264 | 0.6721 |
000519 | 0.6411 | 0.6573 | 0.6609 | 0.7016 |
000520 | 0.6234 | 0.6173 | 0.7038 | 0.7601 |
000523 | 0.6517 | 0.6680 | 0.7200 | 0.6845 |
000524 | 0.6172 | 0.6553 | 0.6286 | 0.6813 |
000526 | 0.6289 | 0.6332 | 0.6259 | 0.6448 |
000530 | 0.6413 | 0.6430 | 0.6949 | 0.7362 |
000531 | 0.6633 | 0.6486 | 0.6381 | 0.6966 |
000532 | 0.6309 | 0.6503 | 0.6558 | 0.6609 |
Mean | 0.6254 | 0.6447 | 0.6547 | 0.6856 |
Metric | ELM | DELM | ||
---|---|---|---|---|
Validation | Test | Validation | Test | |
Acc | 0.6386 | 0.6523 | 0.6634 | 0.7013 |
p | 0.6539 | 0.6312 | 0.6811 | 0.6681 |
R | 0.6648 | 0.6497 | 0.6436 | 0.6257 |
F1 | 0.6548 | 0.6343 | 0.6567 | 0.6369 |
AUC | 0.6357 | 0.6517 | 0.6602 | 0.6892 |
Models | Related Parameters |
---|---|
LSTM | Input size = 11; hidden size = 11; output size = 2; layer num = 1; Activation function = Relu; Optimization function = Adam with learning rate = 0.009, betas = (0.9, 0.999), eps = 1 × 10−8; loss function = Cross Entropy Loss; stop training epoch = 200 |
RNN | Input size = 11; hidden size = 11; output size = 2; layer num = 1; Activation function = Relu; Optimization function = Adam with learning rate = 0.009, betas = (0.9, 0.999), eps = 1 × 10−8; loss function = Cross Entropy Loss; stop training epoch = 200 |
KNN | n of neighbors = 5 |
LR | penalty = ‘l2’ |
RF | n of estimators = 50 |
DT | max of depth = 3 |
GBT | Learning rate = 0.1, n_estimators = 100 |
ABT | n of estimators = 50 |
NB | priors = None; var smoothing = 1 × 10−8 |
LDA | solver = ‘svd’; store covariance = False; tol = 1 × 10−4 |
QDA | store covariance = False; tol = 1 × 10−4 |
SVC | kernel = ‘rbf’; C = 2 |
Code | Model | Validation Acc | Test Acc | Validation P | Test P | Validation R | Test R | Validation F1 | Test F1 | Validation AUC | Test AUC |
---|---|---|---|---|---|---|---|---|---|---|---|
000001 | ELM | 0.5794 | 0.6638 | 0.7547 | 0.7074 | 0.3980 | 0.5504 | 0.5212 | 0.6191 | 0.6115 | 0.6630 |
DELM | 0.7096 | 0.6953 | 0.6987 | 0.7425 | 0.5604 | 0.6201 | 0.6220 | 0.6758 | 0.6904 | 0.6972 | |
LSTM | 0.5711 | 0.6522 | 0.6875 | 0.6512 | 0.4662 | 0.6450 | 0.5555 | 0.6480 | 0.5897 | 0.6522 | |
RNN | 0.5732 | 0.6694 | 0.7200 | 0.6870 | 0.4348 | 0.6222 | 0.5272 | 0.6501 | 0.5977 | 0.6690 | |
KNN | 0.5594 | 0.6409 | 0.7217 | 0.6548 | 0.3806 | 0.5850 | 0.4984 | 0.6180 | 0.5910 | 0.6405 | |
LR | 0.4893 | 0.6209 | 0.7320 | 0.7412 | 0.1766 | 0.3631 | 0.2846 | 0.4874 | 0.5445 | 0.6191 | |
RF | 0.6052 | 0.6481 | 0.7716 | 0.6624 | 0.4453 | 0.5937 | 0.5647 | 0.6261 | 0.6334 | 0.6477 | |
DT | 0.6223 | 0.6552 | 0.7674 | 0.6779 | 0.4925 | 0.5821 | 0.6000 | 0.6264 | 0.6453 | 0.6547 | |
GBT | 0.6223 | 0.6810 | 0.7828 | 0.7000 | 0.4751 | 0.6254 | 0.5913 | 0.6606 | 0.6483 | 0.6806 | |
ABT | 0.6180 | 0.6853 | 0.7668 | 0.7042 | 0.4826 | 0.6311 | 0.5924 | 0.6657 | 0.6420 | 0.6849 | |
NB | 0.4864 | 0.6109 | 0.6693 | 0.6697 | 0.2114 | 0.4265 | 0.3214 | 0.5211 | 0.5350 | 0.6096 | |
LDA | 0.5508 | 0.6423 | 0.7785 | 0.7137 | 0.3060 | 0.4669 | 0.4393 | 0.5645 | 0.5941 | 0.6411 | |
QDA | 0.5894 | 0.6052 | 0.6471 | 0.5894 | 0.6294 | 0.6744 | 0.6381 | 0.6290 | 0.5824 | 0.6056 | |
SVC | 0.6338 | 0.6838 | 0.8202 | 0.7218 | 0.4652 | 0.5908 | 0.5937 | 0.6498 | 0.6636 | 0.6832 | |
000005 | ELM | 0.6311 | 0.6499 | 0.5371 | 0.6524 | 0.4749 | 0.5050 | 0.5041 | 0.5693 | 0.6040 | 0.6387 |
DELM | 0.7241 | 0.6941 | 0.4686 | 0.5909 | 0.4824 | 0.3467 | 0.4754 | 0.4370 | 0.6455 | 0.6108 | |
LSTM | 0.5726 | 0.5976 | 0.4549 | 0.5684 | 0.4000 | 0.5136 | 0.4249 | 0.5385 | 0.5426 | 0.5911 | |
RNN | 0.6405 | 0.6507 | 0.5643 | 0.6468 | 0.3965 | 0.5246 | 0.4643 | 0.5775 | 0.5981 | 0.6409 | |
KNN | 0.6250 | 0.6134 | 0.5267 | 0.5848 | 0.4942 | 0.5382 | 0.5100 | 0.5606 | 0.6023 | 0.6076 | |
LR | 0.6311 | 0.6362 | 0.5497 | 0.6535 | 0.3629 | 0.4385 | 0.4372 | 0.5249 | 0.5845 | 0.6210 | |
RF | 0.6570 | 0.6499 | 0.5659 | 0.6371 | 0.5637 | 0.5482 | 0.5648 | 0.5893 | 0.6408 | 0.6421 | |
DT | 0.5945 | 0.6149 | 0.4880 | 0.5839 | 0.5483 | 0.5548 | 0.5164 | 0.5690 | 0.5865 | 0.6103 | |
GBT | 0.6204 | 0.6575 | 0.5205 | 0.6450 | 0.4903 | 0.5615 | 0.5050 | 0.6004 | 0.5978 | 0.6501 | |
ABT | 0.6143 | 0.6423 | 0.5103 | 0.6162 | 0.5753 | 0.5814 | 0.5408 | 0.5983 | 0.6075 | 0.6376 | |
NB | 0.5793 | 0.5616 | 0.4388 | 0.5631 | 0.2355 | 0.1927 | 0.3065 | 0.2871 | 0.5195 | 0.5331 | |
LDA | 0.6311 | 0.6606 | 0.5365 | 0.6653 | 0.4826 | 0.5216 | 0.5081 | 0.5847 | 0.6053 | 0.6498 | |
QDA | 0.5930 | 0.5951 | 0.4778 | 0.5989 | 0.3320 | 0.3522 | 0.3918 | 0.4435 | 0.5476 | 0.5764 | |
SVC | 0.6463 | 0.6530 | 0.5534 | 0.6420 | 0.5405 | 0.5482 | 0.5469 | 0.5914 | 0.6280 | 0.6449 | |
000007 | ELM | 0.6062 | 0.5770 | 0.5558 | 0.5108 | 0.7924 | 0.7852 | 0.6534 | 0.6190 | 0.6172 | 0.6001 |
DELM | 0.6726 | 0.6483 | 0.5955 | 0.6316 | 0.7050 | 0.6755 | 0.6456 | 0.6528 | 0.6769 | 0.6489 | |
LSTM | 0.6062 | 0.5874 | 0.5540 | 0.5185 | 0.8201 | 0.8033 | 0.6611 | 0.6301 | 0.6189 | 0.6113 | |
RNN | 0.5951 | 0.6049 | 0.5488 | 0.5332 | 0.7827 | 0.8041 | 0.6444 | 0.6404 | 0.6063 | 0.6270 | |
KNN | 0.6045 | 0.5754 | 0.5587 | 0.5102 | 0.7405 | 0.7407 | 0.6369 | 0.6042 | 0.6126 | 0.5937 | |
LR | 0.5397 | 0.5348 | 0.5049 | 0.4833 | 0.8927 | 0.9111 | 0.6450 | 0.6316 | 0.5607 | 0.5766 | |
RF | 0.6256 | 0.6207 | 0.5797 | 0.5526 | 0.7301 | 0.7000 | 0.6462 | 0.6176 | 0.6318 | 0.6295 | |
DT | 0.6402 | 0.6677 | 0.5965 | 0.6012 | 0.7163 | 0.7148 | 0.6509 | 0.6531 | 0.6447 | 0.6730 | |
GBT | 0.6159 | 0.6548 | 0.5703 | 0.5785 | 0.7301 | 0.7778 | 0.6404 | 0.6635 | 0.6227 | 0.6684 | |
ABT | 0.6207 | 0.6532 | 0.5749 | 0.5765 | 0.7301 | 0.7815 | 0.6433 | 0.6635 | 0.6272 | 0.6674 | |
NB | 0.5429 | 0.5381 | 0.5073 | 0.4841 | 0.8374 | 0.8444 | 0.6319 | 0.6154 | 0.5605 | 0.5721 | |
LDA | 0.5802 | 0.5900 | 0.5349 | 0.5197 | 0.7958 | 0.8296 | 0.6398 | 0.6391 | 0.5930 | 0.6165 | |
QDA | 0.5997 | 0.5624 | 0.5714 | 0.5000 | 0.5813 | 0.5481 | 0.5763 | 0.5230 | 0.5986 | 0.5608 | |
000012 | ELM | 0.6275 | 0.6506 | 0.7035 | 0.6523 | 0.6005 | 0.5138 | 0.6479 | 0.5749 | 0.6319 | 0.6404 |
DELM | 0.6728 | 0.6973 | 0.7000 | 0.7380 | 0.6485 | 0.5831 | 0.6733 | 0.6515 | 0.6738 | 0.6940 | |
LSTM | 0.5271 | 0.6758 | 0.5820 | 0.6313 | 0.6077 | 0.7102 | 0.5941 | 0.6680 | 0.5137 | 0.6784 | |
RNN | 0.5666 | 0.6898 | 0.6473 | 0.6833 | 0.5290 | 0.6065 | 0.5822 | 0.6424 | 0.5728 | 0.6836 | |
KNN | 0.5921 | 0.6492 | 0.6780 | 0.6351 | 0.5434 | 0.5569 | 0.6033 | 0.5934 | 0.6001 | 0.6423 | |
LR | 0.6686 | 0.6818 | 0.7354 | 0.6534 | 0.6551 | 0.6554 | 0.6929 | 0.6544 | 0.6708 | 0.6798 | |
RF | 0.6161 | 0.6846 | 0.6844 | 0.6735 | 0.6079 | 0.6092 | 0.6439 | 0.6397 | 0.6175 | 0.6790 | |
DT | 0.5935 | 0.6733 | 0.6747 | 0.6643 | 0.5558 | 0.5846 | 0.6095 | 0.6219 | 0.5997 | 0.6667 | |
GBT | 0.6289 | 0.6931 | 0.7080 | 0.6915 | 0.5955 | 0.6000 | 0.6469 | 0.6425 | 0.6344 | 0.6861 | |
ABT | 0.6048 | 0.6846 | 0.6987 | 0.6875 | 0.5409 | 0.5754 | 0.6098 | 0.6265 | 0.6154 | 0.6764 | |
NB | 0.4986 | 0.6181 | 0.6070 | 0.6821 | 0.3449 | 0.3169 | 0.4399 | 0.4328 | 0.5239 | 0.5956 | |
LDA | 0.6586 | 0.6535 | 0.7213 | 0.6227 | 0.6551 | 0.6246 | 0.6866 | 0.6237 | 0.6592 | 0.6513 | |
QDA | 0.6091 | 0.5601 | 0.6584 | 0.5202 | 0.6551 | 0.5538 | 0.6567 | 0.5365 | 0.6015 | 0.5596 | |
SVC | 0.6275 | 0.6945 | 0.6966 | 0.7011 | 0.6154 | 0.5846 | 0.6535 | 0.6376 | 0.6295 | 0.6863 | |
000014 | ELM | 0.6452 | 0.6486 | 0.6743 | 0.6462 | 0.5791 | 0.5217 | 0.6231 | 0.5773 | 0.6461 | 0.6392 |
DELM | 0.6166 | 0.7000 | 0.6481 | 0.6708 | 0.5029 | 0.5514 | 0.5663 | 0.6053 | 0.6161 | 0.6789 | |
LSTM | 0.6278 | 0.6541 | 0.6646 | 0.6530 | 0.5404 | 0.5416 | 0.5947 | 0.5883 | 0.6289 | 0.6458 | |
RNN | 0.6020 | 0.5893 | 0.6294 | 0.5614 | 0.5203 | 0.5053 | 0.5690 | 0.5310 | 0.6031 | 0.5831 | |
KNN | 0.5851 | 0.5729 | 0.6119 | 0.5367 | 0.4944 | 0.5217 | 0.5469 | 0.5291 | 0.5863 | 0.5691 | |
LR | 0.6295 | 0.6471 | 0.6610 | 0.6364 | 0.5508 | 0.5435 | 0.6009 | 0.5863 | 0.6305 | 0.6395 | |
RF | 0.6237 | 0.6229 | 0.6619 | 0.5980 | 0.5254 | 0.5497 | 0.5858 | 0.5728 | 0.6250 | 0.6174 | |
DT | 0.6295 | 0.6357 | 0.7039 | 0.6314 | 0.4633 | 0.5000 | 0.5588 | 0.5581 | 0.6316 | 0.6257 | |
GBT | 0.6295 | 0.6629 | 0.6480 | 0.6387 | 0.5876 | 0.6149 | 0.6163 | 0.6266 | 0.6300 | 0.6593 | |
ABT | 0.6409 | 0.6329 | 0.6604 | 0.6080 | 0.5989 | 0.5683 | 0.6281 | 0.5875 | 0.6415 | 0.6281 | |
NB | 0.5451 | 0.6000 | 0.5732 | 0.5946 | 0.3983 | 0.4099 | 0.4700 | 0.4853 | 0.5470 | 0.5859 | |
LDA | 0.6223 | 0.6600 | 0.6424 | 0.6448 | 0.5734 | 0.5807 | 0.6060 | 0.6111 | 0.6230 | 0.6541 | |
QDA | 0.5594 | 0.5729 | 0.5991 | 0.5466 | 0.3927 | 0.4193 | 0.4744 | 0.4745 | 0.5615 | 0.5615 | |
SVC | 0.6423 | 0.6600 | 0.6733 | 0.6533 | 0.5706 | 0.5559 | 0.6177 | 0.6007 | 0.6433 | 0.6523 | |
000025 | ELM | 0.5156 | 0.6057 | 0.3599 | 0.5072 | 0.5481 | 0.7394 | 0.4345 | 0.6017 | 0.5235 | 0.6274 |
DELM | 0.6662 | 0.6894 | 0.4686 | 0.5693 | 0.5091 | 0.4656 | 0.4880 | 0.5122 | 0.6233 | 0.6378 | |
LSTM | 0.5709 | 0.6353 | 0.4006 | 0.5470 | 0.5285 | 0.5528 | 0.4553 | 0.5491 | 0.5606 | 0.6219 | |
RNN | 0.6075 | 0.5891 | 0.4414 | 0.4880 | 0.5121 | 0.5475 | 0.4693 | 0.5093 | 0.5843 | 0.5823 | |
KNN | 0.5881 | 0.5943 | 0.4141 | 0.4966 | 0.5146 | 0.5106 | 0.4590 | 0.5035 | 0.5702 | 0.5807 | |
LR | 0.4602 | 0.5560 | 0.3593 | 0.4725 | 0.7531 | 0.8768 | 0.4865 | 0.6141 | 0.5314 | 0.6082 | |
RF | 0.6023 | 0.6539 | 0.4183 | 0.5654 | 0.4393 | 0.6092 | 0.4286 | 0.5864 | 0.5627 | 0.6466 | |
DT | 0.6051 | 0.6567 | 0.4325 | 0.5724 | 0.5230 | 0.5845 | 0.4735 | 0.5784 | 0.5852 | 0.6450 | |
GBT | 0.6051 | 0.6667 | 0.4330 | 0.5714 | 0.5272 | 0.6901 | 0.4755 | 0.6252 | 0.5862 | 0.6705 | |
ABT | 0.5881 | 0.6582 | 0.4118 | 0.5683 | 0.4979 | 0.6303 | 0.4508 | 0.5977 | 0.5662 | 0.6536 | |
NB | 0.3935 | 0.4879 | 0.2793 | 0.4291 | 0.4979 | 0.8204 | 0.3579 | 0.5635 | 0.4188 | 0.5420 | |
LDA | 0.5270 | 0.5759 | 0.3917 | 0.4830 | 0.7113 | 0.7500 | 0.5052 | 0.5876 | 0.5718 | 0.6042 | |
QDA | 0.6435 | 0.5787 | 0.4737 | 0.4586 | 0.4519 | 0.2535 | 0.4625 | 0.3265 | 0.5969 | 0.5258 | |
SVC | 0.5710 | 0.6667 | 0.4060 | 0.5671 | 0.5690 | 0.7289 | 0.4739 | 0.6379 | 0.5705 | 0.6768 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Wang, X.; Wu, S. A Hybrid Method Based on Extreme Learning Machine and Wavelet Transform Denoising for Stock Prediction. Entropy 2021, 23, 440. https://doi.org/10.3390/e23040440
Wu D, Wang X, Wu S. A Hybrid Method Based on Extreme Learning Machine and Wavelet Transform Denoising for Stock Prediction. Entropy. 2021; 23(4):440. https://doi.org/10.3390/e23040440
Chicago/Turabian StyleWu, Dingming, Xiaolong Wang, and Shaocong Wu. 2021. "A Hybrid Method Based on Extreme Learning Machine and Wavelet Transform Denoising for Stock Prediction" Entropy 23, no. 4: 440. https://doi.org/10.3390/e23040440
APA StyleWu, D., Wang, X., & Wu, S. (2021). A Hybrid Method Based on Extreme Learning Machine and Wavelet Transform Denoising for Stock Prediction. Entropy, 23(4), 440. https://doi.org/10.3390/e23040440