Physical Limitations on Fundamental Efficiency of SET-Based Brownian Circuits
Abstract
:1. Introduction
2. Simulating SET-Based Brownian Circuit Primitives on SIMON 2.0
2.1. Fundamentals
2.2. Brownian Ratchet
2.3. Brownian Hub
2.4. Brownian CJoin
3. An Illustrative Example: Brownian Two-Bit Sort
4. Energy Dissipation Analyses
4.1. Fundamental Bounds
4.2. Free Energy Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korkmaz, P.; Akgul, B.E.S.; Palem, K.V. Ultra-low energy computing with noise: Energy performance probability. In Proceedings of the IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures (ISVLSI’06), San Diego, CA, USA, 7–11 June 2004. [Google Scholar]
- Murali, K.; Sinha, S.; Ditto, W.L.; Bulsara, A.R. Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor. Phys. Rev. Lett. 2009, 102, 104101. [Google Scholar] [CrossRef] [Green Version]
- Worschech, L.; Hartmann, F.; Kim, T.Y.; Höfling, S.; Kamp, M.; Forchel, A.; Ahopelto, J.; Neri, I.; Dari, A.; Gammaitoni, L. Universal and reconfigurable logic gates in a compact three-terminal resonant tunneling diode. Appl. Phys. Lett. 2010, 96, 042112. [Google Scholar] [CrossRef]
- Guerra, D.N.; Bulsara, A.R.; Ditto, W.L.; Sinha, S.; Murali, K.; Mohanty, P. A Noise-Assisted Reprogrammable Nanomechanical Logic Gate. Nano Lett. 2010, 10, 1168–1171. [Google Scholar] [CrossRef] [Green Version]
- Dari, A.; Kia, B.; Bulsara, A.; Ditto, W.L. Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 047521. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.M.; Raussendorf, R. Efficient Quantum Computation with Probabilistic Quantum Gates. Phys. Rev. Lett. 2005, 95, 080503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aharonov, D.; Kitaev, A.; Preskill, J. Fault-Tolerant Quantum Computation with Long-Range Correlated Noise. Phys. Rev. Lett. 2006, 96, 050504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peper, F.; Lee, J.; Carmona, J.; Cortadella, J.; Morita, K. Brownian Circuits: Fundamentals. ACM J. Emerg. Technol. Comput. Syst. 2013, 9, 3. [Google Scholar] [CrossRef]
- Lee, J.; Peper, F.; Cotofana, S.D.; Naruse, M.; Ohtsu, M.; Kawazoe, T.; Takashi, Y.; Shimokawa, T.; Kish, L.; Kubota, T. Brownian circuits: Designs. Int. J. Unconv. Comput. 2016, 12, 341. [Google Scholar]
- Peper, F.; Lee, J. On Non-polar Token-Pass Brownian Circuits. In Reversibility and Universality. Emergence, Complexity and Computation; Adamatzky, A., Ed.; Springer: Cham, Switzerland, 2018; Volume 30. [Google Scholar]
- Jibiki, Y.; Goto, M.; Tamura, E.; Cho, J.; Miki, S.; Ishikawa, R.; Suzuki, Y. Skyrmion brownian circuit implemented in continuous ferromagnetic thin film. Appl. Phys. Lett. 2020, 117, 082402. [Google Scholar] [CrossRef]
- Anderson, N.G. Information as a Physical Quantity. Inf. Sci. 2017, 397, 415–416. [Google Scholar] [CrossRef]
- Natori, K.; Sano, N. Scaling limit of digital circuits due to thermal noise. J. Appl. Phys. 1998, 83, 5019–5024. [Google Scholar] [CrossRef] [Green Version]
- Gammaitoni, L. Noise limited computational speed. Appl. Phys. Lett. 2007, 91, 224104. [Google Scholar] [CrossRef] [Green Version]
- Ercan, İ.; Anderson, N.G. Modular dissipation analysis for QCA. In Field-Coupled Nanocomputing; Anderson, N.G., Bhanja, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8280, pp. 357–375. [Google Scholar]
- Ercan, İ.; Anderson, N. Heat dissipation in nanocomputing: Lower bounds from physical information theory. IEEE Trans. Nanotechnol. 2013, 12, 1047. [Google Scholar] [CrossRef]
- Ercan, İ.; Rahman, M.; Anderson, N.G. Determining fundamental heat dissipation bounds for transistor-based nanocomputing paradigms. In Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures, San Diego, CA, USA, 8–9 June 2011; pp. 169–174. [Google Scholar]
- Anderson, N.G.; Ercan, İ.; Ganesh, N. Toward nanoprocessor thermodynamics. IEEE Trans. Nanotechnol. 2013, 12, 902. [Google Scholar] [CrossRef]
- Ganesh, N.; Anderson, N.G. Irreversibility and Dissipation in Finite-State Automata. Phys. Lett. A 2013, 377, 3266–3271. [Google Scholar] [CrossRef]
- Anderson, N.G.; Ercan, İ.; Ganesh, N. Revealing Fundamental Efficiency Limits for Complex Computing Structures. In Proceedings of the 4th IEEE Rebooting Computing Summit, Washington, DC, USA, 9–11 December 2015. [Google Scholar]
- Ercan, İ. Fundamental Energy Dissipation Limits in Logic Circuits. ICT Energy Lett. 2016, 12, 3–4. [Google Scholar]
- Ercan, İ.; Susam, O.; Altun, M.; Cilasun, M.H. Synthesis and fundamental energy analysis of fault-tolerant CMOS circuits. In Proceedings of the SMACD’17: International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, Taormina, Italy, 13 June 2017. [Google Scholar]
- Ercan, İ.; Suyabatmaz, E. Fundamental Energy Limits of SET-Based Brownian NAND and Half-Adder Circuits. Eur. Phys. J. B 2018, 91, 1–8. [Google Scholar] [CrossRef]
- Yakar, O.; Nie, Y.; Wada, K.; Agarwal, A.; Ercan, İ. Energy Efficiency Analyses of Microring-Resonator-Based BDD Logic Circuits. In Proceedings of the IEEE International Conference on Rebooting Computing, San Diego, CA, USA, 6–8 November 2019. [Google Scholar]
- Yakar, O.; Ercan, İ. Logic Threshold for Microring Resonator-based BDD Circuits: Physical and Operational Analyses. Turk. J. Eng. 2019, 3, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Barışık, S.; Ercan, İ. Thermodynamic Cost of Edge Detection in Artificial Neural Network (ANN)- Based Processors. Int. J. Parallel Emergent Distrib. Syst. 2020, 1–3. [Google Scholar] [CrossRef]
- López-Suárez, M.; Neri, I.; Gammaitoni, L. Sub-kBT micro-electromechanical irreversible logic gate. Nat. Commun. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Williams, R.S.; DeBenedictis, E.P. OSTP Nanotechnology-Inspired Grand Challenge: Sensible Machines. In Proceedings of the IEEE Rebooting Computing, Austin, TX, USA, 9–11 December 2015. [Google Scholar]
- Peper, F. The End of Moore’s Law: Opportunities for Natural Computing? New Gener. Comput. 2017, 35, 253–269. [Google Scholar] [CrossRef]
- Agbo, I.O. Design and Simulation of Single Electron Tunneling Circuits for Brownian Motion Based Logic and Arithmetic Computation. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Wasshuber, C.; Kosina, H.; Selberherr, S. SIMON-A simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1997, 16, 937–944. [Google Scholar] [CrossRef]
- Wasshuber, C. Computational Single-Electronics; Springer: Wien, Austria, 2001. [Google Scholar]
- Serreli, V.; Lee, C.F.; Kay, E.R.; Leigh, D.A. A molecular information ratchet. Nature 2017, 445, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Meenderinck, C.; Cotofana, S. Computing Division Using Single-Electron Tunneling Technology. IEEE Trans. Nanotechnol. 2007, 6, 451–459. [Google Scholar] [CrossRef]
- Geerlig, L.J.; Anderegg, V.F.; Holweg, P.A.M.; Mooij, J.E.; Pothier, H.; Pothier, H.; Esteve, D.; Urbina, C.; Devoret, M.H. Frequency-locked turnstile device for single electrons. Phys. Rev. E 1990, 64, 2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safiruddin, S. Single Electron Tunneling Based Building Blocks for Delay Insensitive Circuits. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Bennett, C.H. The thermodynamics of computation—A review. Int. J. Theor. Phys. 1982, 21, 905. [Google Scholar] [CrossRef]
- Anderson, N.G. On the physical implementation of logical transformations: Generalized L-machines. Theory Comput. Sci. 2010, 411, 4179. [Google Scholar] [CrossRef] [Green Version]
- Strasberg, P.; Cerrillo, J.; Schaller, G.; Brandes, T. Thermodynamics of stochastic Turing machines. Phys. Rev. E 2015, 92, 042104. [Google Scholar] [CrossRef] [Green Version]
INPUTS | OUTPUTS | ||||||
---|---|---|---|---|---|---|---|
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
IN | # of Tunneling Events | (meV) | (meV) | (meV) |
---|---|---|---|---|
00 | 22 | 40.73 | ||
01 | 26 | 70.98 | ||
10 | 22 | 46.53 | ||
11 | 22 | 53.75 | ||
Average | 23 | 53.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ercan, İ.; Sütgöl, Z.D.; Özhan, F.O. Physical Limitations on Fundamental Efficiency of SET-Based Brownian Circuits. Entropy 2021, 23, 406. https://doi.org/10.3390/e23040406
Ercan İ, Sütgöl ZD, Özhan FO. Physical Limitations on Fundamental Efficiency of SET-Based Brownian Circuits. Entropy. 2021; 23(4):406. https://doi.org/10.3390/e23040406
Chicago/Turabian StyleErcan, İlke, Zeynep Duygu Sütgöl, and Faik Ozan Özhan. 2021. "Physical Limitations on Fundamental Efficiency of SET-Based Brownian Circuits" Entropy 23, no. 4: 406. https://doi.org/10.3390/e23040406
APA StyleErcan, İ., Sütgöl, Z. D., & Özhan, F. O. (2021). Physical Limitations on Fundamental Efficiency of SET-Based Brownian Circuits. Entropy, 23(4), 406. https://doi.org/10.3390/e23040406