# An Attack on Zawadzki’s Quantum Authentication Scheme

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

#### 1.1. Our Contribution

#### 1.2. Paper Roadmap

## 2. Quantum Equality Tests Are Impossible

- (1)
- $F(i,j)=1$ if and only if $i=j$.
- (2)
- Alice learns nothing about j nor about $F(i,j)$.
- (3)
- Bob learns $F(i,j)$ with certainty. If $F(i,j)=0$ then Bob learns nothing about i besides that $i\ne j$.

## 3. Insecurity of Zawadzki’s QIA Protocol

## 4. A Key Space Reduction Attack on Zawadzki’s Protocol

## 5. Other QIA Protocols

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bellare, M.; Rogaway, P. Entity authentication and key distribution. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 1993; pp. 232–249. [Google Scholar]
- Zuccherato, R. Entity Authentication. In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A., Ed.; Springer: Boston, MA, USA, 2005; p. 203. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci.
**2014**, 560, 7–11. [Google Scholar] [CrossRef] - Penghao, N.; Yuan, C.; Chong, L. Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys.
**2016**, 55, 302–312. [Google Scholar] [CrossRef] - Zeng, G.; Zhang, W. Identity verification in quantum key distribution. Phys. Rev. A
**2000**, 61, 022303. [Google Scholar] [CrossRef] - Huang, P.; Zhu, J.; Lu, Y.; Zeng, G.H. Quantum identity authentication using Gaussian-modulated squeezed states. Int. J. Quantum Inf.
**2011**, 9, 701–721. [Google Scholar] [CrossRef] - Zawadzki, P. Quantum identity authentication without entanglement. Quantum Inf. Process.
**2019**, 18, 7. [Google Scholar] [CrossRef][Green Version] - ho Hong, C.; Heo, J.; Jang, J.G.; Kwon, D. Quantum identity authentication with single photon. Quantum Inf. Process.
**2017**, 16, 236. [Google Scholar] [CrossRef] - Doosti, M.; Kumar, N.; Delavar, M.; Kashefi, E. Client-Server Identification Protocols with Quantum PUF. arXiv
**2020**, arXiv:2006.04522. [Google Scholar] - Fladung, L.; Nikolopoulos, G.M.; Alber, G.; Fischlin, M. Intercept-Resend Emulation Attacks against a Continuous-Variable Quantum Authentication Protocol with Physical Unclonable Keys. Cryptography
**2019**, 3, 25. [Google Scholar] [CrossRef][Green Version] - Nikolopoulos, G.M. Continuous-variable quantum authentication of physical unclonable keys: Security against an emulation attack. Phys. Rev. A
**2018**, 97, 012324. [Google Scholar] [CrossRef][Green Version] - Gianfelici, G.; Kampermann, H.; Bruß, D. Theoretical framework for physical unclonable functions, including quantum readout. Phys. Rev. A
**2020**, 101, 042337. [Google Scholar] [CrossRef] - Nikolopoulos, G.D.E. Continuous-variable quantum authentication of physical unclonable keys. Sci. Rep.
**2017**, 7, 46047. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kang, M.; Heo, J.; Hong, C.; Yang, H.J.; Han, S.; Moon, S. Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process.
**2018**, 17, 159. [Google Scholar] [CrossRef] - Lo, H.K. Insecurity of quantum secure computations. Phys. Rev. A
**1997**, 56, 1154. [Google Scholar] [CrossRef][Green Version] - Colbeck, R. Impossibility of secure two-party classical computation. Phys. Rev. A
**2007**, 76, 062308. [Google Scholar] [CrossRef][Green Version] - Buhrman, H.; Christandl, M.; Schaffner, C. Complete Insecurity of Quantum Protocols for Classical Two-Party Computation. Phys. Rev. Lett.
**2012**, 109, 160501. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhao, Y.; Fung, C.H.F.; Qi, B.; Chen, C.; Lo, H.K. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A
**2008**, 78, 042333. [Google Scholar] [CrossRef][Green Version] - Fung, C.H.F.; Qi, B.; Tamaki, K.; Lo, H.K. Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A
**2007**, 75, 032314. [Google Scholar] [CrossRef][Green Version] - Pljonkin, A. Vulnerability of the synchronization process in the quantum key distribution system. Int. J. Cloud Appl. Comput. (IJCAC)
**2019**, 9, 50–58. [Google Scholar] [CrossRef][Green Version] - Yang, Y.G.; Wang, H.Y.; Jia, X.; Zhang, H. A quantum protocol for (t, n)-threshold identity authentication based on greenberger-horne-zeilinger states. Int. J. Theor. Phys.
**2013**, 52, 524–530. [Google Scholar] [CrossRef] - Mihara, T. Quantum identification schemes with entanglements. Phys. Rev. A
**2002**, 65, 052326. [Google Scholar] [CrossRef] - Shi, B.S.; Li, J.; Liu, J.M.; Fan, X.F.; Guo, G.C. Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A
**2001**, 281, 83–87. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.S.; Li, C.F.; Guo, G.C. Quantum authentication using entangled state. arXiv
**2000**, arXiv:quant-ph/0008044. [Google Scholar] - Damgård, I.B.; Fehr, S.; Salvail, L.; Schaffner, C. Secure identification and QKD in the bounded-quantum-storage model. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2007; pp. 342–359. [Google Scholar]
- Bouman, N.J.; Fehr, S.; González-Guillén, C.; Schaffner, C. An All-But-One Entropic Uncertainty Relation, and Application to Password-Based Identification. In Theory of Quantum Computation, Communication, and Cryptography; Springer: Berlin/Heidelberg, Germany, 2013; pp. 29–44. [Google Scholar]
- Carter, L.; Wegman, M.N. Universal Classes of Hash Functions (Extended Abstract). In Proceedings of the 9th Annual ACM Symposium on Theory of Computing, Boulder, CO, USA, 4–6 May 1977; Hopcroft, J.E., Friedman, E.P., Harrison, M.A., Eds.; ACM: New York, NY, USA, 1977; pp. 106–112. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Jain, R.; Oppenheim, J.; Perry, C. Conclusive exclusion of quantum states. Phys. Rev. A
**2014**, 89. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**The protocol presented in [7].

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

González-Guillén, C.E.; González Vasco, M.I.; Johnson, F.; Pérez del Pozo, Á.L.
An Attack on Zawadzki’s Quantum Authentication Scheme. *Entropy* **2021**, *23*, 389.
https://doi.org/10.3390/e23040389

**AMA Style**

González-Guillén CE, González Vasco MI, Johnson F, Pérez del Pozo ÁL.
An Attack on Zawadzki’s Quantum Authentication Scheme. *Entropy*. 2021; 23(4):389.
https://doi.org/10.3390/e23040389

**Chicago/Turabian Style**

González-Guillén, Carlos E., María Isabel González Vasco, Floyd Johnson, and Ángel L. Pérez del Pozo.
2021. "An Attack on Zawadzki’s Quantum Authentication Scheme" *Entropy* 23, no. 4: 389.
https://doi.org/10.3390/e23040389