CEPS: An Open Access MATLAB Graphical User Interface (GUI) for the Analysis of Complexity and Entropy in Physiological Signals
Abstract
:1. Introduction
Objectives
- To explore the literature on complexity and entropy measures for those suited to a MATLAB® GUI for users who may not be familiar with them and also not expert in computer programming methods.
- To investigate the ‘family trees’ of different complexity and entropy measures in order to better select existing codes for inclusion in CEPS.
- To create a GUI that would allow univariate analysis of single and multichannel (time) series data, specifically for—but not limited to—the data types resulting from our own research. CEPS should thus include some simple analytical methods and basic normality tests, as well as methods to calculate complexity and entropy measures, multiscale measures in particular.
- For CEPS to include some basic pre-processing steps and some ancillary methods for estimating embedding dimension and time delay parameters. Batch processing (import and export) should be possible, and different import and export formats catered for.
- As a central feature, for CEPS to include a ‘Test and Plot’ facility for experimentation with measure parameters prior to processing and exporting results. As a priority, to test CEPS with reference to results obtained using other packages, although this is not always a simple process, given the variety of parameter settings possible [7]. Where this is not feasible, to verify results in consultation with the originators of the different complexity and entropy measures implemented.
- Eventually, for CEPS to include a final ‘Classification’ section where results using different measures and methods can be compared, and a ‘plug-in’ facility to allow other researchers to add measures not already included in the list available.
- To include a ‘Primer’ with CEPS containing enough background information and references to enable those unfamiliar with the concepts of complexity and entropy to use the GUI and process their own data without too much of a ‘garbage in—garbage out’ result.
- To illustrate how CEPS may be applied in practice by using the GUI for analysing the effects of paced breathing (PB) on variability of ECG, PPG and RSP data in a small pilot study. In particular, to compare the relative performance of conventional linear (time- and frequency-domain) indices and the nonlinear measures provided in CEPS, as well as between the different complexity and entropy measures.
2. Materials and Methods
2.1. Literature Review
- (tool[Title] OR toolbox[Title] OR “graphic* user interface”[Title] OR Software[Title] OR program*[Title]) AND (signal*[Title] OR series[Title]). This resulted in 1190 papers for the period 2000–2020.
2.2. Creating CEPS
2.3. Paced Breathing Data
3. Results
3.1. Literature Review
3.1.1. Complexity and Entropy Measures of Potential Interest Located in PubMed
3.1.2. Researchers, Institutions, and Measures
- 1.
- For 1-dimensional data, H = 2–FD [89].
- 2.
- In certain situations, DFA α is directly related to fractal dimension D, with D = 2–α/2 [90].
- 3.
- For 1-dimensional data, H ≈ DFA α [91].
- 4.
- D2 is related theoretically to the Lyapunov exponents [92].
- 5.
- The LLE can be estimated from RQA [93].
- 6.
- See [94]
- 7.
- Pedro Bernaola-Galván, the main originator of the volatility method of assessing nonlinearity, has co-authored work on nonlinearity with Alberto Porta [95].
- 8.
- Paolo Castiglioni, whose code for mFmDFA is used in CEPS, has co-authored at least six papers with Alberto Porta.
- 9.
- Paolo Grigolini, the originator of Diffusion entropy, co-authored some papers on diffusion with Constantino Tsallis when both were at the University of North Texas [96].
- 10/11.
- SE, CE and DiffEn were all introduced by Shannon in his famous 1948 paper [97].
- 12.
- 13/14.
- 15.
- Both AF and DFA are methods of assess the fractal exponent α, the former particularly for point process data [101].
- 16.
- KSE can also be estimated from RQA [102].
- 17.
- See [103].
- 18.
- See [104].
- 19.
- See [105].
- 20.
- See [106].
3.1.3. Paced Breathing
3.2. A Brief Description of CEPS
3.2.1. Installation
3.2.2. Loading Data
3.2.3. Pre-Processing Data
3.2.4. Testing Parameters
3.2.5. Running the Pipeline
3.2.6. Processing Results
3.2.7. Classifying Results
3.2.8. System Requirements, License, Troubleshooting and Sample Data
3.3. Paced Breathing Data—Some Basic Analysis
3.3.1. Measures That Increased during Paced Breathing
3.3.2. Measures That Decreased during Paced Breathing
3.3.3. Conclusion of Paced Breathing Example Study
4. Discussion
4.1. Limitations
4.2. Advantages
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPE | Amplitude-aware Permutation Entropy |
ACV 1-10 | Autocovariance, lags 1-10 |
AE | Average Entropy |
AE global | Average Entropy (global) |
AE local | Average Entropy (local) |
AF | Allan Factor |
ApEn | Approximate Entropy |
AR | Allan Ratio |
BBi | Inter-breath interval |
BE | Bubble Entropy |
BEDE | Balanced Estimation of Diffusion En |
BMI | Body Mass Index |
c… | Corrected |
cCE | Corrected Conditional Entropy |
CCM | Complex Correlation Measure |
CE | Conditional Entropy |
CI | Complexity Index |
CoSEn | Coefficient of Sample Entropy |
cRPE | Corrected Rényi permutation entropy |
D2 | Correlation Dimension |
DE | Dispersion Entropy |
DFA | Detrended Fluctuation Analysis |
DiffEn | Differential Entropy |
DistEn | Distribution Entropy |
DnEn | Diffusion Entropy |
DPE | Delayed Permutation Entropy |
E-MC | Entropy using Mo Chen’s algorithm |
EoDm | Entropy of Difference (order m) |
EoE global | Entropy of Entropy (global) |
EoE local | Entropy of Entropy (local) |
EPP | Extended Poincaré plot |
FD | Fractal Dimension |
FE | Fuzzy Entropy |
fSampEn | Fixed Sample Entropy |
H | Hurst Exponent |
HFD 12 | Higuchi’s fractal dimension lag k = 12 |
Hjorth A, M and M | Hjorth activity, motility and complexity parameters |
HR | Heart Rate |
HRA | Heart Rate Asymmetry |
HRV | Heart Rate Variability |
ImPE | Improved Multiscale |
Katz FD | Katz Fractal Dimension |
KLDm | Kullback-Leibler Divergence (order m) |
KSE | Kolmogorov(-Sinai) Entropy |
LF/HF | Ratio of low frequency to high frequency HRV power |
LLE | Largest Lyapunov Exponent |
LSampEn | Local Sample Entropy |
LZC | Lempel-Ziv Complexity |
m… | Multiscale |
M-E | Min-Entropy |
mF | Multifractal |
mFmDFA | Multifractal Multiscale Detrended Fluctuation Analysis |
MSE | Multiscale Entropy |
PB | Paced Breathing |
PE | Permutation Entropy |
PhEn | Phase Entropy |
PM-E | Permutation Min-Entropy |
PP | Poincaré Plot |
PPG | Photoplethysmography |
PPi | Pulse-to-Pulse PPG interval |
QSE | Quadratic Sample Entropy |
RC | Refined Composite |
RCmDE | Refined Composite Multiscale Dispersion Entropy |
RCmFE | Refined Composite Multiscale Fuzzy Entropy |
RCMSEσ | Refined Composite Multiscale Sample Entropy based on SD (σ) |
RE | Rényi Entropy |
RMSSD | Root mean square of successive RRi |
RoCV | Robust Coefficient of Variation |
RQA | Recurrence Quantification Analysis |
RQA DET | RQA Determinism |
RQA LAM | RQA Laminarity |
RQA Lmax | RQA Length of longest (diagonal) line segment |
RQA TT | Recurrence Quantification Analysis Trapping time |
RRi | Intervals in time between successive R waves in the ECG |
RSP | Respiration |
SampEn | Sample Entropy |
SD1 10 | Standard Deviation along the minor axis of the Poincaré plot (lag k = 10) |
SD2 3 | Standard Deviation along the major axis of the PP (lag k = 3) |
SDNN | Standard Deviation of normal-to-normal ECG RR intervals (RRi) |
SDRR | Standard Deviation of all sinus beat RR intervals |
SE | Shannon Entropy |
SlopeEn | Slope Entropy |
SpEn | Spectral Entropy |
SymDyn | Symbolic Dynamics |
tbc | To be confirmed |
TE | Tsallis Entropy |
T-E | Tone-Entropy |
VLF | Very Low Frequency |
VM | Volatility Method |
References
- García, J.; Martínez, I.; Sörnmo, L.; Olmos, S.; Mur, A.; Laguna, P. Remote processing server for ECG-based clinical diagnosis support. IEEE Trans. Inf. Technol. Biomed. 2002, 6, 277–284. [Google Scholar] [CrossRef]
- Cuesta, D.; Micó, P.; Aboy, M.; Novák, D.; Brezny, R.; Samblas, L.; Pastor, D.; Sancho, S. Biosignal Laboratory: A software: Tool for biomedical signal processing and analysis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Cancun, Mexico, 17–23 September 2003; Volume 25, pp. 3544–3547. [Google Scholar] [CrossRef]
- Guerrero, J.F.; Bataller, M.; Soria, E.; Magdalena, R. BioLab: An educational tool for signal processing training in biomedical engineering. IEEE Trans. Educ. 2007, 50, 34–40. [Google Scholar] [CrossRef]
- Lascu, M.; Lascu, D. Graphical programming based biomedical signal acquisition and processing. Int. J. Circuits Syst. Signal. Process. 2007, 4, 317–326. [Google Scholar]
- Beste, C.; Otto, T.; Hoffmann, S. The biopsychology-nonlinear analysis toolbox: A free, open-source Matlab-toolbox for the non-linear analysis of time series data. Neuroinformatics 2010, 8, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Bera, J.N.; Mitradoi, M. Development of an embedded system and MATLAB-based GUI for online acquisition and analysis of ECG signal. Measurement 2010, 43, 1119–1126. [Google Scholar] [CrossRef]
- Rodríguez-Liñares, L.; Lado, M.J.; Vila, X.A.; Méndez, A.J.; Cuesta, P. gHRV: Heart rate variability analysis made easy. Comput. Methods Programs Biomed. 2014, 116, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Kaçar, S.; Sakoğlu, Ü. Design of a novel biomedical signal processing and analysis tool for functional neuroimaging. Comput. Methods Programs Biomed. 2016, 125, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Li, P. EZ Entropy: A software application for the entropy analysis of physiological time-series. Biomed. Eng. Online 2019, 18, 30. [Google Scholar] [CrossRef] [Green Version]
- McConnell, M.; Schwerin, B.; So, S.; Richards, B. RR-APET—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2020, 185, 1–12. [Google Scholar] [CrossRef]
- Tompkins, W.J.; Wilson, J. Software for biomedical engineering signal processing laboratory experiments. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; Volume 2009, pp. 2008–2010. [Google Scholar] [CrossRef]
- Maestri, R.; Pinna, G.D. POLYAN: A computer program for polyparametric analysis of cardio-respiratory variability signals. Comput. Methods Programs Biomed. 1998, 56, 37–48. [Google Scholar] [CrossRef]
- Niskanen, J.-P.; Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. Software for advanced HRV analysis. Comput. Methods Programs Biomed. 2004, 76, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Jović, A.; Bogunović, N.; Cupić, M. Extension and detailed overview of the HRVFrame framework for heart rate variability analysis. EUROCON 2013, 2013, 1757–1763. [Google Scholar] [CrossRef]
- Pichot, V.; Roche, F.; Celle, S.; Barthélémy, J.-C.; Chouchou, F. HRVanalysis: A Free software for analyzing cardiac autonomic activity. Front. Physiol. 2016, 7, 557. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, V.A.; Kropotov, Y.D. WinEEG, Version 2.83. Patent RF2001610516, 2001 (May 8). WinEEG is available from Mitsar, St. Petersburg. Available online: https://mitsar-eeg.com/product/wineeg-advanced/ (accessed on 1 December 2020).
- Delorme, A.; Scott Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Aguera, P.-E.; Jerbi, K.; Caclin, A.; Bertrand, O. ELAN: A software package for analysis and visualization of MEG, EEG, and LFP signals. Comput. Intell. Neurosci. 2011, 158970, 1–11. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716, 1–13. [Google Scholar] [CrossRef]
- Jović, A.; Suć, L.; Bogunović, N. Feature extraction from electroencephalographic records using EEGFrame framework. In Proceedings of the 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2013; Volume 36, pp. 1237–1242. [Google Scholar]
- Ramshur, J.T. Design, Evaluation, and Application of Heart Rate Variability Analysis Software (HRVAS). Master’s Thesis, University of Memphis, Memphis, TN, USA, 2010. [Google Scholar]
- García Martínez, C.A.; Otero Quintana, A.; Vila, X.A.; Lado Touriño, M.J.; Rodríguez-Liñares, L.; Rodríguez Presedo, J.M.; Méndez Penín, A.J. Heart Rate Variability Analysis with the R Package RHRV; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Garcia, C.A.; Otero, A.; Presedo, J.; Vila, X.; Felix, P. A software toolkit for nonlinear heart rate variability analysis. Comput. Cardiol. 2013, 40, 393–396. [Google Scholar]
- Silva, L.E.V.; Fazan, R., Jr.; Marin-Neto, J.A. PyBioS: A freeware computer software for analysis of cardiovascular signals. Comput. Methods Programs Biomed. 2020, 197, 105718. [Google Scholar] [CrossRef]
- [Anon.] Nevrokard aHRV. Available online: http://www.nevrokard.eu/index.html (accessed on 16 November 2020).
- Perakakis, P.; Joffily, M.; Taylor, M.; Guerra, P.; Jaime Vila, J. KARDIA: A Matlab software for the analysis of cardiac interbeat intervals. Comput. Methods Programs Biomed. 2010, 98, 83–89. [Google Scholar] [CrossRef]
- Gomes, P.M.C. Development of an Open-Source Python Toolbox for Heart Rate Variability (HRV). Master’s Thesis, University of Applied Sciences Hamburg, Hamburg, Germany, 2018. [Google Scholar]
- Krishnan, A.P.; Fang, J.; Smith, R.; Wang, D.J.J. Complexity. Laboratory of Functional MRI Technology (LOFT), Department of Neurology, UCLA. Available online: http://loft-lab.org/index-5.html (accessed on 16 November 2020).
- Hamilton, P.; West, B.J. Software review: Chaos data analyzer, professional version. By J. Sprott and G. Rowlands. Nonlinear Dyn. Psychol. Life Sci. 2000, 4, 195–199. [Google Scholar] [CrossRef]
- Hegger, R.; Kantz, H.; Schreiber, T. Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 1999, 9, 413–435. [Google Scholar] [CrossRef] [Green Version]
- Kugiumtzis, D.; Tsimpiris, A. Measures of Analysis of Time Series (MATS): A MATLAB toolkit for computation of multiple measures on time series data bases. J. Stat. Softw. 2010, 33, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Colombet, B.; Woodman, M.; Badier, J.M.; Bénar, C.G. AnyWave: A cross-platform and modular software for visualizing and processing electrophysiological signals. J. Neurosci. Methods 2015, 242, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friganovic, K.; Jovic, A.; Jozic, K.; Kukolja, D.; Cifrek, M. MULTISAB project: A web platform based on specialized frameworks for heterogeneous biomedical time series analysis-an architectural overview. In CMBEBIH; Badnjevic, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2017, pp. 9–15. [Google Scholar] [CrossRef]
- Mendonça, F.; Mostafa, S.S.; Morgado-Dias, F.; Ravelo-García, A.G. Matrix of Lags: A tool for analysis of multiple dependent time series applied for CAP scoring. Comput. Methods Programs Biomed. 2020, 189, 105314. [Google Scholar] [CrossRef] [PubMed]
- Dabiré, H.; Mestivier, D.; Jarnet, J.; Safar, M.E.; Chau, N.P. Quantification of sympathetic and parasympathetic tones by nonlinear indexes in normotensive rats. Am. J. Physiol. 1998, 275, H1290–H1297. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. S1), 2466–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porta, A.; De Maria, B.; Cairo, B.; Vaini, E.; Bari, V. 1. Short-term model-based multiscale complexity analysis of cardiac control provides complementary information to single-scale approaches. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 4848–4851. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, Y.D.; Yuan, C.C.; Wang, S.H.; Peng, L. Entropy analysis of short-term heartbeat interval time series during regular walking. Entropy 2017, 19, 568. [Google Scholar] [CrossRef]
- Valente, M.; Javorka, M.; Porta, A.; Bari, V.; Krohova, J.; Czippelova, B.; Turianikova, Z.; Nollo, G.; Faes, L. Univariate and multivariate conditional entropy measures for the characterization of short-term cardiovascular complexity under physiological stress. Physiol. Meas. 2018, 39, 014002. [Google Scholar] [CrossRef] [Green Version]
- Bernaola-Galván, P.A.; Gómez-Extremera, M.; Romance, A.R.; Carpena, P. Correlations in magnitude series to assess nonlinearities: Application to multifractal models and heartbeat fluctuations. Phys. Rev. E 2017, 96, 032218. [Google Scholar] [CrossRef] [Green Version]
- Tarvainen, M.P.; Ranta-Aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- Bizzego, A.; Mina, M.; Zarbo, C.; Esposito, G.; Furlanello, C. Physiolyze: A Galaxy-based web service for heart rate variabil-ity analysis with online processing. In Proceedings of the 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Trento, Italy, 25–28 May 2014; Volume 8, pp. 97–98. [Google Scholar] [CrossRef]
- Inouye, T.; Ukai, S.; Shinosaki, K.; Iyama, A.; Matsumoto, Y.; Toi, S. Changes in the fractal dimension of alpha envelope from wakefulness to drowsiness in the human electroencephalogram. Neurosci. Lett. 1994, 174, 105–108. [Google Scholar] [CrossRef]
- Boxt, L.M.; Katz, J.; Liebovitch, L.S.; Jones, R.; Esser, P.D.; Reid, L. Fractal analysis of pulmonary arteries: The fractal dimen-sion is lower in pulmonary hypertension. J. Thorac. Imaging 1994, 9, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Turcott, R.G.; Teich, M.C. Fractal character of the electrocardiogram: Distinguishing heart-failure and normal patients. Ann. Biomed. Eng. 1996, 24, 269–293. [Google Scholar] [CrossRef]
- Vollmer, M. HRVTool—An open-source matlab toolbox for analyzing heart rate variability. Comput. Cardiol. 2019, 46, 1–4. [Google Scholar] [CrossRef]
- Schaffer, W.M.; Ellner, S.; Kot, M. Effects of noise on some dynamical models in ecology. J. Math. Biol. 1986, 24, 479–523. [Google Scholar] [CrossRef]
- Ciancia, C.; Facchini, U.; Giroletti, E.; Rovera, S. Fractal behavior of indoor radon variations. Radiol. Med. 1992, 83, 282–286. [Google Scholar]
- Shaqiri, E.; Gusev, M. A programmatic approach for development of the ViewHRV service platform with accurate and reli-able results. In Proceedings of the 43rd International Convention on Information, Communication and Electronic Technol-ogy (MIPRO), Opatija, Croatia, 28 September–2 October 2020; Volume 43, pp. 343–348. [Google Scholar]
- Vest, A.N.; Da Poian, G.; Li, Q.; Liu, C.; Nemati, S.; Shah, A.J.; Clifford, G.D. An open source benchmarked toolbox for car-diovascular waveform and interval analysis. Physiol. Meas. 2018, 39, 105004. [Google Scholar] [CrossRef]
- Kaplan, D.; Staffin, P. Software for Heart Rate Variability. Macalester College: St. Paul, MN, USA. Available online: https://www.macalester.edu/~kaplan/hrv/doc/ (accessed on 17 February 2021).
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Babloyantz, A.; Destexhe, A. Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 1986, 83, 3513–3517. [Google Scholar] [CrossRef] [Green Version]
- Kankaanpää, M.; Taimela, S.; Webber, C.L., Jr.; Airaksinen, O.; Hänninen, O. Lumbar paraspinal muscle fatigability in re-petitive isoinertial loading: EMG spectral indices, Borg scale and endurance time. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 236–242. [Google Scholar] [CrossRef]
- Rasmussen, J.K.; Rosenberger, K.; Langbein, J. EasieRR: An open-source software for noninvasive heart rate variability as-sessment. Methods Ecol. Evol. 2020, 11, 773–782. [Google Scholar] [CrossRef]
- De Carvalho, J.L.; Da Rocha, A.F.; de Oliveira Nascimento, F.A.; Neto, J.S.; Junqueira, L.F. Development of a Matlab soft-ware for analysis of heart rate variability. In Proceedings of the 6th International Conference on Signal Processing, Beijing, China, 26–30 August 2002; Volume 6, pp. 1488–1491. [Google Scholar] [CrossRef]
- Bartels, R.; Peçanha, T. HRV: A Pythonic package for heart rate variability analysis. J. Open Source Softw. 2020, 5, 1867. [Google Scholar] [CrossRef]
- Kudryński, K.; Strumiłło, P.; Ruta, J. Computer software tool for heart rate variability (HRV), T-wave alternans (TWA) and heart rate turbulence (HRT) analysis from ECGs. Med. Sci. Monit. 2011, 17, MT63–MT71. [Google Scholar] [CrossRef] [PubMed]
- Jadav, G.M.; Lerga, J.; Štajduhar, I. Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local entropy. EURASIP J. Adv. Signal. Process. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Dias, D.P.M. CardioSeries Software. 2020. Available online: www.danielpenteado.com (accessed on 11 May 2020).
- Woo, M.A.; Stevenson, W.G.; Moser, D.K.; Trelease, R.B.; Harper, R.M. Patterns of beat-to-beat heart rate variability in ad-vanced heart failure. Am. Heart J. 1992, 123, 704–710. [Google Scholar] [CrossRef]
- Gusev, V.D.; Kulichkov, V.A.; Chupakhina, O.M. The Lempel-Ziv complexity and local structure analysis of genomes. Biosystems 1993, 30, 183–200. [Google Scholar] [CrossRef]
- Bartels, R.; Neumamm, L.; Peçanha, T.; Carvalho, A.R. SinusCor: An advanced tool for heart rate variability analysis. Biomed. Eng. Online 2017, 16, 1–5. [Google Scholar] [CrossRef]
- Barth, M.; Bryan, R.K.; Hegerl, R.; Baumeister, W. Estimation of missing cone data in three-dimensional electron microsco-py. Scanning Microsc. Suppl. 1988, 2, 277–284. [Google Scholar] [PubMed]
- Gonzalez Andino, S.L.; Grave de Peralta Menendez, R.; Thut, G.; Spinelli, L.; Blanke, O.; Michel, C.M.; Seeck, M.; Landis, T. Measuring the complexity of time series: An application to neurophysiological signals. Hum. Brain Mapp. 2000, 11, 46–57. [Google Scholar] [CrossRef]
- Xu, F.H.; Qi, B.; Ma, X.F.; Xu, H.; Zheng, H.X.; Lo, H.K. Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 2012, 20, 12366–12377. [Google Scholar] [CrossRef] [Green Version]
- Malacarne, L.C.; Mendes, R.S.; Pedron, I.T.; Lenzi, E.K. Nonlinear equation for anomalous diffusion: Unified power-law and stretched exponential exact solution. Phys. Rev. E Stat. Nonlinear Soft. Matter. Phys. 2001, 63, 030101. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.; Procaccia, I. Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A Gen. Phys. 1985, 31, 1872–1882. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Baselli, G.; Liberati, D.; Montano, N.; Cogliati, C.; Gnecchi-Ruscone, T.; Malliani, A.; Cerutti, S. Measuring regu-larity by means of a corrected conditional entropy in sympathetic outflow. Biol. Cybern. 1998, 78, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Lake, D.E. Improved entropy rate estimation in physiological data. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 33, pp. 1463–1466. [Google Scholar] [CrossRef]
- Cirugeda-Roldán, E.M.; Cuesta-Frau, D.; Miró-Martínez, P.; Oltra-Crespo, D.; Vigil-Medina, L.; Varela-Entrecanales, M. A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records. Comput. Methods Programs Biomed. 2014, 114, 231–239. [Google Scholar] [CrossRef]
- Estrada, L.; Torres, A.; Sarlabous, L.; Jané, R. EMG-derived respiration signal using the fixed sample entropy during an in-spiratory load protocol. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 1703–1706. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [Green Version]
- Di Zenzo, S.; Cinque, L.; Levialdi, S. Image thresholding using fuzzy entropies. IEEE Trans. Syst. Man Cybern. B Cybern. 1998, 28, 15–23. [Google Scholar] [CrossRef]
- Rostaghi, M.; Azami, H. Dispersion entropy: A measure for time-series analysis. IEEE Signal Proc. Lett. 2016, 23, 610–614. [Google Scholar] [CrossRef]
- Cuesta-Frau, D. Slope entropy: A new time series complexity estimator based on both symbolic patterns and amplitude information. Entropy 2019, 21, 1167. [Google Scholar] [CrossRef] [Green Version]
- Manis, G.; Aktaruzzaman, M.; Sassi, R. Bubble entropy: An entropy almost free of parameters. IEEE Trans. Biomed. Eng. 2017, 64, 2711–2718. [Google Scholar] [PubMed]
- Li, P.; Liu, C.Y.; Li, K.; Zheng, D.C.; Liu, C.C.; Hou, Y.L. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 2015, 53, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Rohila, A.; Sharma, A. Phase entropy: A new complexity measure for heart rate variability. Physiol. Meas. 2019, 40, 105006. [Google Scholar] [CrossRef] [PubMed]
- Inouye, T.; Shinosaki, K.; Sakamoto, H.; Toi, S.; Ukai, S.; Iyama, A.; Katsuda, Y.; Hirano, M. Quantification of EEG irregular-ity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 204–210. [Google Scholar] [CrossRef]
- Kapsalis, J.G.; Walker, J.E., Jr.; Wolf, M. A physico-chemical study of the mechanical properties of low and intermediate moisture foods. J. Texture Stud. 1970, 1, 464–483. [Google Scholar] [CrossRef]
- Allegrini, P.; Grigolini, P.; Hamilton, P.; Palatella, L.; Raffaelli, G. Memory beyond memory in heart beating, a sign of a healthy physiological condition. Phys. Rev. E 2002, 65, 041926. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.H.; Victor, J.D.; Gardner, E.P.; Gardner, D. Spike train analysis toolkit: Enabling wider application of infor-mation-theoretic techniques to neurophysiology. Neuroinformatics 2009, 7, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Voss, A.; Kurths, J.; Kleiner, H.J.; Witt, A.; Wessel, N. Improved analysis of heart rate variability by methods of nonlinear dynamics. J. Electrocardiol. 1995, 28 (Suppl. S1), 81–88. [Google Scholar] [CrossRef]
- Schepers, H.E.; van Beek, J.H.G.M.; Bassingthwaighte, J.B. Four methods to estimate the fractal dimension from self-affine signals. IEEE Eng. Med. Biol. Mag. 2002, 11, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Kotimäki, V.; Räsänen, E.; Hennig, H.; Heller, E.J. Fractal dynamics in chaotic quantum transport. Phys. Rev. E 2013, 88, 022913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryce, R.M.; Sprague, K.B. Revisiting detrended fluctuation analysis. Sci. Rep. 2012, 2, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Physica D 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Eckmann, J.-P.; Oliffson Kamphorst, S.; Ruelle, D. Recurrence plots of dynamical systems. Eur. Lett. 1987, 4, 973–977. [Google Scholar] [CrossRef] [Green Version]
- Aquino, G.; Grigolini, P.; Scafetta, N. Sporadic randomness, Maxwell’s Demon and the Poincaré recurrence times. Chaos Solitons Fractals 2001, 12, 2023–2038. [Google Scholar] [CrossRef] [Green Version]
- Faes, L.; Gómez-Extremera, M.; Pernice, R.; Carpena, P.; Nollo, G.; Porta, A.; Bernaola-Galván, P. Comparison of methods for the assessment of nonlinearity in short-term heart rate variability under different physiopathological states. Chaos 2019, 29, 123114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bologna, M.; Tsallis, C.; Grigolini, P. Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 62, 2213–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N. Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. 2007, 103, 1143–1149. [Google Scholar] [CrossRef]
- García-González, M.A.; Fernández-Chimeno, M.; Ramos-Castro, J. Errors in the estimation of approximate entropy and other recurrence-plot-derived indices due to the finite resolution of RR time series. IEEE Trans. Bio-Med. Eng. 2009, 56, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Thiel, M.; Romano, M.C.; Read, P.L.; Kurths, J. Estimation of dynamical invariants without embedding by recurrence plots. Chaos 2004, 14, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, J.; Malgaroli, A.; Cerutti, S.; Signorini, M.G. Detection of fractal behavior in temporal series of synaptic quantal release events: A feasibility study. Comput. Intell. Neurosci. 2012, 2012, 704673. [Google Scholar] [CrossRef] [Green Version]
- Faure, P.; Korn, H. A new method to estimate the Kolmogorov entropy from recurrence plots: Its application to neuronal signals. Phys. D Nonlinear Phenom. 1998, 122, 265–279. [Google Scholar] [CrossRef]
- Kamizawa, T.; Hara, T.; Ohya, M. On relations among the entropic chaos degree, the Kolmogorov-Sinai entropy and the Lyapunov exponent. J. Math. Phys. 2014, 55, 03270. [Google Scholar] [CrossRef]
- Finn, J.M.; Goettee, J.D.; Toroczkai, Z.; Anghel, M.; Woodet, B.P. Estimation of entropies and dimensions by nonlinear symbolic time series analysis. Chaos 2003, 13, 444–456. [Google Scholar] [CrossRef]
- Bandt, C.; Shiha, F. Order patterns in time series. J. Time Ser. Anal. 2007, 28, 646–665. [Google Scholar] [CrossRef]
- Grigolini, P.; Leddon, D.; Scafetta, N. Diffusion entropy and waiting time statistics of hard-x-ray solar flares. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2002, 65, 046203. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.; Henriques, T.; Castro, L.; Souto, A.; Antunes, L.; Costa-Santos, C.; Teixeira, A. The entropy universe. Entropy 2021, 23, 222. [Google Scholar] [CrossRef]
- Li, W.S.; Zhao, Y.X.; Wang, Q.; Zhou, J. Twenty years of entropy research: A bibliometric overview. Entropy 2019, 21, 694. [Google Scholar] [CrossRef] [Green Version]
- Azami, H.; Escudero, J. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Comput. Methods Programs Biomed. 2016, 128, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.F.; Lin, P.Y.; Chao, H.H.; Hsu, L.; Chi, S. Average entropy: Measurement of disorder for cardiac RR interval signals. Phys. A Stat. Mech. Appl. 2019, 529, 121533. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.C.; Yang, H.J. Hurst exponents for short time series. Phys. Rev. E 2011, 84, 066114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmakar, C.K.; Khandoker, A.H.; Gubbi, J.; Palaniswami, M. Complex Correlation Measure: A novel descriptor for Poincaré plot. Biomed. Eng. Online 2009, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Ghiran, I.; Peng, C.-K.; Nicholson-Weller, A.; Goldberger, A.L. Complex dynamics of human red blood cell flickering: Alterations with in vivo aging. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2008, 78, 02090. [Google Scholar] [CrossRef] [Green Version]
- Lake, D.E.; Moorman, J.R. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H319–H325. [Google Scholar] [CrossRef]
- Theiler, J. Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A Gen. Phys. 1987, 36, 4456–4462. [Google Scholar] [CrossRef]
- Faranda, D.; Vaienti, S. Correlation dimension and phase space contraction via extreme value theory. Chaos 2018, 28, 041103. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.C.; Jiao, Y.Y.; Lu, B.L. Differential entropy feature for EEG-based vigilance estimation. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 6627–6630. [Google Scholar] [CrossRef]
- Grigolini, P.; Palatella, L.; Raffaelli, G. Asymmetric anomalous diffusion: An efficient way to detect memory in time series. Fractals 2001, 9, 439–449. [Google Scholar] [CrossRef]
- Martínez-Rodrigo, A.; García-Martínez, B.; Zunino, L.; Alcaraz, R.; Fernández-Caballero, A. Multi-lag analysis of symbolic entropies on EEG recordings for distress recognition. Front. Neuroinform. 2019, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Nardone, P. Entropy of Difference. 2014. Available online: https://arxiv.org/abs/1411.0506v2 (accessed on 1 December 2020).
- Hsu, C.F.; Wei, S.Y.; Huang, H.P.; Hsu, L.; Chi, S. Entropy of entropy: Measurement of dynamical complexity for biological systems. Entropy 2017, 19, 550. [Google Scholar] [CrossRef]
- Satti, R.; Abid, N.U.H.; Bottaro, M.; De Rui, M.; Garrido, M.; Raoufy, M.R.; Montagnese, S.; Mani, A.R. The application of the extended Poincaré plot in the analysis of physiological variabilities. Front. Physiol. 2019, 10, 116. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time-series on the basis of the fractal theory. Physica D 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Chen, W.T.; Wang, Z.Z.; Xie, H.B.; Yu, W.X. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Sarlabous, L.; Torres, A.; Fiz, J.A.; Jané, R. Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values. PLoS ONE 2014, 9, e88902. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage: An Experimental Study; Constable: London, UK, 1965. [Google Scholar]
- Jelinek, H.F.; August, K.G.; Imam, M.H.; Khandoker, A.H.; Koenig, A.; Robert Riener, R. Heart rate asymmetry and emotional response to robot-assist task challenges in post-stroke patients. Comput. Cardiol. 2011, 38, 521–524. [Google Scholar]
- Azami, H.; Escudero, J. Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings. Biomed. Signal Process. Control 2016, 23, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Grassberger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Lempel, A.; Ziv, J. On the complexity of finite sequences. IEEE Trans. Inf. Theory 1976, 75–81. [Google Scholar] [CrossRef]
- Castiglioni, P.; Faini, A. A fast DFA algorithm for multifractal multiscale analysis of physiological time series. Front. Physiol. 2019, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez-Molina, A.J.; Iglesias-Parro, S.; Soriano, M.F.; Aznarte, J.I. Multiscale Lempel-Ziv complexity for EEG measures. Clin. Neurophysiol. 2015, 126, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Zunino, L.; Olivares, F.; Rosso, O.A. Permutation min-entropy: An improved quantifier for unveiling subtle temporal correlations. Eur. Lett. 2015, 109, 10005-p1–10005-p6. [Google Scholar] [CrossRef]
- Rényi, A. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, Berkley, CA, USA, 20–30 June 1960; Volume 4, pp. 547–561. [Google Scholar]
- Zbilut, J.P.; Thomasson, N.; Webber, C.L. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 2002, 24, 53–60. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Matlab Codes for “Refined Multiscale Fuzzy Entropy based on Standard Deviation for Biomedical Signal Analysis”, [Software]. Institute for Digital Communications, School of Engineering, University of Edinburgh. Available online: https://datashare.is.ed.ac.uk/handle/10283/2099 (accessed on 29 November 2020). [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Oida, E.; Moritani, T.; Yamori, Y. Tone-entropy analysis on cardiac recovery after dynamic exercise. J. Appl. Physiol. 1997, 82, 1794–1801. [Google Scholar] [CrossRef]
- Bilo, G.; Revera, M.; Bussotti, M.; Bonacina, D.; Styczkiewicz, K.; Caldara, G.; Giglio, A.; Faini, A.; Giuliano, A.; Lombardi, C.; et al. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS ONE 2012, 7, e49074. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Wang, B.Q.; Wu, H.; Chai, X.K.; Wang, W.D.; Peng, C.K. Effects of slow and regular breathing exercise on cardiopulmonary coupling and blood pressure. Med. Biol. Eng. Comput. 2017, 55, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Busch, V.; Magerl, W.; Kern, U.; Haas, J.; Hajak, G.; Eichhammer, P. The effect of deep and slow breathing on pain perception, autonomic activity, and mood processing—An experimental study. Pain Med. 2012, 13, 215–228. [Google Scholar] [CrossRef]
- Sellakumar, G.K. Effect of slow-deep breathing exercise to reduce anxiety among adolescent school students in a selected higher secondary school in Coimbatore, India. J. Psychol. Ed. Res. 2015, 23, 54–72. [Google Scholar]
- Steffen, P.R.; Austin, T.; DeBarros, A.; Brown, T. The impact of resonance frequency breathing on measures of heart rate variability, blood pressure, and mood. Front. Public Health 2017, 5, 222. [Google Scholar] [CrossRef] [Green Version]
- Weippert, M.; Behrens, K.; Rieger, A.; Kumar, M.; Behrens, M. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability. Appl. Physiol. Nutr. Metab. 2015, 40, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Bornas, X.; Llabrés, J.; Noguera, M.; López, A.M.; Gelabert, J.M.; Vila, I. Fear induced complexity loss in the electrocardiogram of flight phobics: A multiscale entropy analysis. Biol. Psychol. 2006, 73, 272–279. [Google Scholar] [CrossRef]
- Porta, A.; Bari, V.; Ranuzzi, G.; De Maria, B.; Baselli, G. Assessing multiscale complexity of short heart rate variability series through a model-based linear approach. Chaos 2017, 27, 093901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faes, L.; Zhao, H.; Chon, K.H.; Nollo, G. Time-varying surrogate data to assess nonlinearity in nonstationary time series: Application to heart rate variability. IEEE Trans. Biomed. Eng. 2008, 56, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Kapidžić, A.; Platiša, M.M.; Bojić, T.; Kalauzi, A. Nonlinear properties of cardiac rhythm and respiratory signal under paced breathing in young and middle-aged healthy subjects. Med. Eng. Phys. 2014, 36, 1577–1584. [Google Scholar] [CrossRef]
- Karmakar, C.K.; Khandoker, A.H.; Jelinek, H.F.; Palaniswami, M. Tone-entropy analysis of heart rate variability in cardiac autonomic neuropathy. In ECG Time Series Variability Analysis: Engineering and Medicine; Jelinek, H.E., Cornforth, D.J., Khandoker, A.H., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 227–247. [Google Scholar]
- Baevsky, R.M.; Berseneva, A.P. Anwendungen des System Kardivar zur Feststellung des Stressniveaus und des Anpassungsvermögens des Organismus; Messungsstandards und Physiologische Interpretation: Moscow, Russia; Prague, Czech Republic, 2008. [Google Scholar]
- Santos Filho, E.; Saijo, Y.; Tanaka, A.; Yambe, T.; Yoshizawa, M. Fractal dimension of 40 MHz intravascular ultrasound radio frequency signals. Ultrasonics 2008, 48, 35–39. [Google Scholar] [CrossRef]
- Jouny, C.C.; Bergey, G.K. Characterization of early partial seizure onset: Frequency, complexity and entropy. Clin. Neurophysiol. 2012, 123, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Aliahmad, B.; Kumar, D.K.; Hao, H.; Unnikrishnan, P.; Che Azemin, M.Z.; Kawasaki, R.; Mitchell, P. Zone specific fractal dimension of retinal images as predictor of stroke incidence. Sci. World J. 2014, 2014, 467462. [Google Scholar] [CrossRef] [Green Version]
- Kawe, T.N.J.; Shadli, S.M.; McNaughton, N. Higuchi’s fractal dimension, but not frontal or posterior alpha asymmetry, predicts PID-5 anxiousness more than depressivity. Sci. Rep. 2019, 9, 19666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlak-Buś, K.; Kołodziejczyk-Feliksik, M.; Kramer, L.; Nikisch, E.; Moczko, J.; Siminiak, T. The Allan factor: A new model of mathematical interpretation of heart rate variability in stable coronary artery disease. Preliminary results. Kardiol. Pol. 2005, 63, 125–132. [Google Scholar]
- Skinner, J.E.; Pratt, C.M.; Vybiral, T. A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 1993, 125, 731–743. [Google Scholar] [CrossRef]
- Pritchard, W.S.; Duke, D.W.; Coburn, K.L.; Moore, N.C.; Tucker, K.A.; Jann, M.W.; Hostetler, R.M. EEG-based, neural-net predictive classification of Alzheimer’s disease versus control subjects is augmented by non-linear EEG measures. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 118–130. [Google Scholar] [CrossRef]
- Nieminen, H.; Takala, E.P. Evidence of deterministic chaos in the myoelectric signal. Electromyogr. Clin. Neurophysiol. 1996, 36, 49–58. [Google Scholar] [PubMed]
- Stam, C.J.; Jelles, B.; Achtereekte, H.A.; van Birgelen, J.H.; Slaets, J.P. Diagnostic usefulness of linear and nonlinear quantitative EEG analysis in Alzheimer’s disease. Clin. Electroencephalogr. 1996, 27, 69–77. [Google Scholar] [CrossRef]
- Fell, J.; Röschke, J.; Mann, K.; Schäffner, C. Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 401–410. [Google Scholar] [CrossRef]
- Grözinger, M.; Fell, J.; Röschke, J. Neural net classification of REM sleep based on spectral measures as compared to nonlinear measures. Biol. Cybern. 2001, 85, 335–341. [Google Scholar] [CrossRef]
- Balli, T.; Palaniappan, R. Classification of biological signals using linear and nonlinear features. Physiol. Meas. 2010, 31, 903–920. [Google Scholar] [CrossRef]
- Gao, J.; Hu, W. [Recognition and study of pathological voice based on nonlinear dynamics using gaussian mixture model/support vector machine]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2012, 29, 750–753, 759. [Google Scholar] [PubMed]
- Eagleman, S.L.; Vaughn, D.A.; Drover, D.R.; Drover, C.M.; Cohen, M.S.; Ouellette, N.T.; MacIver, M.B. Do complexity measures of frontal EEG distinguish loss of consciousness in geriatric patients under anesthesia? Front. Neurosci. 2018, 12, 645. [Google Scholar] [CrossRef] [PubMed]
- Maxim, V.; Sendur, L.; Fadili, J.; Suckling, J.; Gould, R.; Howard, R.; Bullmore, E. Fractional Gaussian noise, functional MRI and Alzheimer’s disease. Neuroimage 2005, 25, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Yum, M.K.; Kim, J.T.; Kim, H.S. Increased non-stationarity of heart rate during general anaesthesia with sevoflurane or desflurane in children. Br. J. Anaesth. 2008, 100, 772–779. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.R.; Sun, W.Z.; Shieh, J.S.; Huang, N.E. Investigating fractal property and respiratory modulation of human heartbeat time series using empirical mode decomposition. Med. Eng. Phys. 2010, 32, 490–496. [Google Scholar] [CrossRef]
- Mäkikallio, T.H.; Ristimäe, T.; Airaksinen, K.E.; Peng, C.-K.; Goldberger, A.L.; Huikuri, H.V. Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am. J. Cardiol. 1998, 81, 27–31. [Google Scholar] [CrossRef]
- Hotta, N.; Otsuka, K.; Murakami, S.; Yamanaka, G.; Kubo, Y.; Matsuoka, O.; Yamanaka, T.; Shinagawa, M.; Nunoda, S.; Nishimura, Y.; et al. Fractal analysis of heart rate variability and mortality in elderly community-dwelling people—Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed. Pharm. 2005, 59 (Suppl. S1), S45–S48. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Hu, J.; Gao, J.; Crosson, B.; Peck, K.K.; Wierenga, C.E.; McGregor, K.; Zhao, Q.; White, K.D. Discriminating brain activity from task-related artifacts in functional MRI: Fractal scaling analysis simulation and application. Neuroimage 2008, 40, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Heitmann, A.; Huebner, T.; Schroeder, R.; Perz, S.; Voss, A. Multivariate short-term heart rate variability: A pre-diagnostic tool for screening heart disease. Med. Biol. Eng. Comput. 2011, 49, 41–50. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Zhou, W.X. Multifractal detrending moving-average cross-correlation analysis. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2011, 84, 016106. [Google Scholar] [CrossRef] [Green Version]
- Tseng, L.; Tang, S.C.; Chang, C.Y.; Lin, Y.C.; Abbod, M.F.; Shieh, J.S. Nonlinear and conventional biosignal analyses applied to tilt table test for evaluating autonomic nervous system and autoregulation. Open Biomed. Eng. J. 2013, 7, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Téllez, J.P.; Herrera, S.; Benito, S.; Giraldo, B.F. Analysis of the breathing pattern in elderly patients using the Hurst exponent applied to the respiratory flow signal. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; Volume 2014, pp. 3422–3425. [Google Scholar] [CrossRef]
- Mumtaz, W.; Malik, A.S.; Ali, S.S.; Yasin, M.A.; Amin, H. Detrended fluctuation analysis for major depressive disorder. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 4162–4165. [Google Scholar] [CrossRef]
- Castiglioni, P.; Parati, G.; Faini, A. Can the detrended fluctuation analysis reveal nonlinear components of heart rate variability? In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; Volume 2019, pp. 6351–6354. [Google Scholar] [CrossRef]
- Tsai, C.H.; Ma, H.P.; Lin, Y.T.; Hung, C.S.; Hsieh, M.C.; Chang, T.Y.; Kuo, P.H.; Lin, C.; Lo, M.T.; Hsu, H.H.; et al. Heart rhythm complexity impairment in patients with pulmonary hypertension. Sci. Rep. 2019, 9, 10710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeragani, V.K.; Radhakrishna, R.K.; Tancer, M.; Uhde, T. Nonlinear measures of respiration: Respiratory irregularity and increased chaos of respiration in patients with panic disorder. Neuropsychobiology 2002, 46, 111–120. [Google Scholar] [CrossRef]
- Sackellares, J.C.; Shiau, D.S.; Principe, J.C.; Yang, M.C.; Dance, L.K.; Suharitdamrong, W.; Chaovalitwongse, W.; Pardalos, P.M.; Iasemidis, L.D. Predictability analysis for an automated seizure prediction algorithm. J. Clin. Neurophysiol. 2006, 23, 509–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshnoud, S.; Nazari, M.A.; Shamsi, M. Functional brain dynamic analysis of ADHD and control children using nonlinear dynamical features of EEG signals. J. Integr. Neurosci. 2018, 17, 11–17. [Google Scholar] [CrossRef]
- Javorka, M.; Trunkvalterova, Z.; Tonhajzerova, I.; Lazarova, Z.; Javorkova, J.; Javorka, K. Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clin. Physiol. Funct. Imaging 2008, 28, 326–331. [Google Scholar] [CrossRef]
- Mohebbi, M.; Ghassemian, H. Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal. Physiol. Meas. 2011, 32, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Ferrufino, L.; Bril, B.; Dietrich, G.; Nonaka, T.; Coubard, O.A. Practice of contemporary dance promotes stochastic postural control in aging. Front. Hum. Neurosci. 2011, 5, 169. [Google Scholar] [CrossRef] [Green Version]
- Terrill, P.I.; Wilson, S.J.; Suresh, S.; Cooper, D.M.; Dakin, C. Application of recurrence quantification analysis to automatically estimate infant sleep states using a single channel of respiratory data. Med. Biol. Eng. Comput. 2012, 50, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Lichtwarck-Aschoff, A.; Hasselman, F.; Cox, R.; Pepler, D.; Granic, I. A characteristic destabilization profile in parent-child interactions associated with treatment efficacy for aggressive children. Nonlinear Dyn. Psychol. Life Sci. 2012, 16, 353–379. [Google Scholar]
- Ito, K.; Hotta, Y. EMG-based detection of muscle fatigue during low-level isometric contraction by recurrence quantification analysis and monopolar configuration. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; Volume 2012, pp. 4237–4241. [Google Scholar] [CrossRef]
- Frondelius, L.; Järvenranta, K.; Koponen, T.; Mononen, J. The effects of body posture and temperament on heart rate variability in dairy cows. Physiol. Behav. 2015, 139, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Brignol, A.; Al-Ani, T.; Drouot, X. Phase space and power spectral approaches for EEG-based automatic sleep-wake classification in humans: A comparative study using short and standard epoch lengths. Comput. Methods Programs Biomed. 2013, 109, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Hu, S.; Yu, H. Recovery of heart rate variability after treadmill exercise analyzed by lagged Poincaré plot and spectral characteristics. Med. Biol. Eng. Comput. 2018, 56, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Farah, B.Q.; Christofaro, D.G.D.; Cavalcante, B.R.; Andrade-Lima, A.; Germano-Soares, A.H.; Vanderlei, L.C.M.; Lanza, F.C.; Ritti-Dias, R.M. Cutoffs of short-term heart rate variability parameters in Brazilian adolescents male. Pediatr. Cardiol. 2018, 39, 1397–1403. [Google Scholar] [CrossRef]
- Byun, S.; Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Yu, H.Y.; Jeon, H.J. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol. Comput Biol. Med. 2019, 112, 103381. [Google Scholar] [CrossRef]
- Zhang, X.S.; Roy, R.J.; Jensen, E.W. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 2001, 48, 1424–1433. [Google Scholar] [CrossRef]
- Huang, L.; Yu, P.; Ju, F.; Cheng, J. Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia. Med. Eng. Phys. 2003, 25, 321–327. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Hagihira, S.; Sleigh, J.W. The effect of isoflurane anesthesia on the electroencephalogram assessed by harmonic wavelet bicoherence-based indices. J. Neural Eng. 2011, 8, 056011. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.; Naghsh-Nilchi, A.R. Efficient image denoising method based on a new adaptive wavelet packet thresholding function. IEEE Trans. Image Process. 2012, 21, 3981–3990. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, V.E.; Chouvarda, I.G.; Maglaveras, N.K.; Baltopoulos, G.I.; Pneumatikos, I.A. Temperature multiscale entropy analysis: A promising marker for early prediction of mortality in septic patients. Physiol. Meas. 2013, 34, 1449–1466. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Phillips, C.A.; Rogers, G.L.; Barrenas, F.; Benson, M.; Langston, M.A. Differential Shannon entropy and differential coefficient of variation: Alternatives and augmentations to differential expression in the search for disease-related genes. Int. J. Comput. Biol. Drug Des. 2014, 7, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.M.; Liu, S.W.; Wang, L.W.; Yang, J.; Sun, Y.Y.; He, D.D. [An algorithm of spectral minimum shannon entropy on extracting endmember of hyperspectral image]. Guang Pu Xue Yu Guang Pu Fen Xi 2014, 34, 2229–2233. [Google Scholar]
- Wu, J.W.; Patterson-Lomba, O.; Novitsky, V.; Pagano, M. A generalized entropy measure of within-host viral diversity for identifying recent HIV-1 infections. Medicine 2015, 94, e1865. [Google Scholar] [CrossRef]
- Johnson, K.L.; Williams, J.G.; Maleki, S.J.; Hurlburt, B.K.; London, R.E.; Mueller, G.A. Enhanced approaches for identifying Amadori products: Application to peanut allergens. J. Agric. Food Chem. 2016, 64, 1406–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delic, J.; Alhilali, L.M.; Hughes, M.A.; Gumus, S.; Fakhran, S. White matter injuries in mild traumatic brain injury and posttraumatic migraines: Diffusion entropy analysis. Radiology 2016, 279, 859–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravi, K.; Sartaj, M.; Tsai, F.T.; Singh, V.P.; Kazakis, N.; Melesse, A.M.; Prakash, I.; Tien Bui, D.; Pham, B.T. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci. Total Environ. 2018, 642, 1032–1049. [Google Scholar] [CrossRef]
- Zhu, Z.; Peng, D. Using Shannon entropy to model turbulence-induced flocculation of cohesive sediment in water. Environ. Sci. Pollut. Res. Int. 2019, 26, 959–974. [Google Scholar] [CrossRef]
- Liang, J.; Zhao, S.; Di, L.; Wang, J.; Sun, P.; Chai, X.; Li, H. Eddy-current-induced distortion correction using maximum reconciled mutual information in diffusion MR imaging. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Fiz, J.A.; Jané, R.; Laciar, E.; Galdiz, J.B.; Gea, J.; Morera, J. Rényi entropy and Lempel-Ziv complexity of mechanomyographic recordings of diaphragm muscle as indexes of respiratory effort. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; Volume 2008, pp. 2112–2115. [Google Scholar] [CrossRef]
- Choi, Y.S. Information-theoretical quantifier of brain rhythm based on data-driven multiscale representation. Biomed. Res. Int. 2015, 2015, 830926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Lu, L.; Ma, J.; Bian, Z.; Lu, Q.; Cao, L.; Gao, S. Tsallis entropy-based prior for PET reconstruction. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2013, 30, 455–459. [Google Scholar]
- Zhang, Y.D.; Wang, S.H.; Yang, X.J.; Dong, Z.C.; Liu, G.; Phillips, P.; Yuan, T.F. Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. Springerplus 2015, 4, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, P.; Jayapathy, R.; Torrents-Barrena, J.; Linda, M.M.; Mol, B.; Mohanalin, J.; Puig, D. Improving the performance of empirical mode decomposition via Tsallis entropy: Application to Alzheimer EEG analysis. Biomed. Mater. Eng. 2018, 29, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Campos, S.; Monteiro, J.; Venâncio, C.; Costa, B.; Guedes de Pinho, P.; Antunes, L. Performance of anesthetic depth indexes in rabbits under propofol anesthesia: Prediction probabilities and concentration-effect relations. Anesthesiology 2011, 115, 303–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihlen, E.A.F.; Weiss, A.; Bourke, A.; Helbostad, J.L.; Hausdorff, J.M. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. J. Biomech. 2016, 49, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Aydın, S.; Güdücü, Ç.; Kutluk, F.; Öniz, A.; Özgören, M. The impact of musical experience on neural sound encoding performance. Neurosci. Lett. 2019, 694, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Bai, W.; Song, J.; Zhan, S.; Qian, X.; Shi, W.; Lian, Y.; Rueckert, D. Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Med. Phys. 2015, 42, 3822–3833. [Google Scholar] [CrossRef] [Green Version]
- Bruhn, J.; Röpcke, H.; Hoeft, A. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology 2000, 92, 715–726. [Google Scholar] [CrossRef]
- Bruhn, J.; Bouillon, T.W.; Radulescu, L.; Hoeft, A.; Bertaccini, E.; Shafer, S.L. Correlation of approximate entropy, bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of “anesthetic depth” during coadministration of propofol and remifentanil. Anesthesiology 2003, 98, 621–627. [Google Scholar] [CrossRef]
- Gonçalves, H.; Bernardes, J.; Rocha, A.P.; Ayres-de-Campos, D. Linear and nonlinear analysis of heart rate patterns associated with fetal behavioral states in the antepartum period. Early Hum. Dev. 2007, 83, 585–591. [Google Scholar] [CrossRef]
- Sarlabous, L.; Torres, A.; Fiz, J.A.; Gea, J.; Martinez-Llorens, J.M.; Morera, J.; Jané, R. Interpretation of the approximate entropy using fixed tolerance values as a measure of amplitude variations in biomedical signals. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; Volume 2010, pp. 5967–5970. [Google Scholar] [CrossRef]
- López-Cuevas, A.; Castillo-Toledo, B.; Medina-Ceja, L.; Ventura-Mejía, C.; Pardo-Peña, K. An algorithm for on-line detection of high frequency oscillations related to epilepsy. Comput. Methods Programs Biomed. 2013, 110, 354–360. [Google Scholar] [CrossRef]
- Hsu, W.Y. Assembling a multi-feature EEG classifier for left-right motor imagery data using wavelet-based fuzzy approximate entropy for improved accuracy. Int. J. Neural Syst. 2015, 25, 1550037. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.Y.; Hoh, J.K. Nonlinear analysis of fetal heart rate dynamics in fetuses compromised by asymptomatic partial placental abruption. Placenta 2015, 36, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.S.B., 3rd; Murray, N.G.; Powell, D.W. Athletes who train on unstable compared to stable surfaces exhibit unique postural control strategies in response to balance perturbations. J. Sport Health Sci. 2016, 5, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Kabbach, E.Z.; Mazzuco, A.; Borghi-Silva, A.; Cabiddu, R.; Agnoleto, A.G.; Barbosa, J.F.; de Carvalho Junior, L.C.S.; Mendes, R.G. Increased parasympathetic cardiac modulation in patients with acute exacerbation of COPD: How should we interpret it? Int. J. Chron. Obs. Pulmon. Dis. 2017, 12, 2221–2230. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Wang, K.; Hou, D.; Zhang, J.; Yu, J.; Zhang, G. In situ detection of water quality contamination events based on signal complexity analysis using online ultraviolet-visible spectral sensor. Appl. Opt. 2017, 56, 6317–6323. [Google Scholar] [CrossRef] [PubMed]
- Zia, A.; Sharma, Y.; Bettadapura, V.; Sarin, E.L.; Essa, I. Video and accelerometer-based motion analysis for automated surgical skills assessment. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Wang, S.; Ndaro, N.Z.; Zuo, Y. [Comparative study on evaluation algorithms for neck muscle fatigue based on surface electromyography signal]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2018, 35, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Ouyang, C.S.; Tsai, C.L.; Chiang, C.T.; Yang, R.C.; Wu, R.C.; Wu, H.C.; Lin, L.C. Entropy-based quantitative electroencephalogram analysis for diagnosing attention-deficit hyperactivity disorder in girls. Clin. EEG Neurosci. 2019, 50, 172–179. [Google Scholar] [CrossRef]
- Nan, J.; Zhang, L.; Zheng, Q.; Zhang, M.; Lu, Z. [Comparison between approximate entropy and regional homogeneity for identification of irritable bowel syndrome based on functional magnetic resonance imaging]. Nan Fang Yi Ke Da Xue Xue Bao 2019, 39, 1023–1029. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.H.; Li, L. Diagnosing autism spectrum disorder using brain entropy: A fast entropy method. Comput. Methods Programs Biomed. 2020, 190, 105240. [Google Scholar] [CrossRef]
- Saeedi, M.; Saeedi, A.; Maghsoudi, A. Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals. Phys. Eng. Sci. Med. 2020, 43, 1007–1018. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, L.; Fu, L.; Jia, Y.; Li, P.; Zhao, X.; Qi, H.; Zhou, P.; Zhang, L.; Wan, B.; et al. Visual attention recognition based on nonlinear dynamical parameters of EEG. Biomed. Mater. Eng. 2014, 24, 349–355. [Google Scholar] [CrossRef]
- Albuerne-Sánchez, L.; Charleston-Villalobos, S.; González-Camarena, R.; Chi-Lem, G.; Carrillo, J.G.; Aljama-Corrales, T. Base lung sound in diffuse interstitial pneumonia analyzed by linear and nonlinear techniques. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; Volume 2008, pp. 1615–1618. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, X. A novel technique for muscle onset detection using surface EMG signals without removal of ECG artifacts. Physiol. Meas. 2014, 35, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktaruzzaman, M.; Scarabottolo, N.; Sassi, R. Parametric estimation of sample entropy for physical activity recognition. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society—EMBC, Milan, Italy, 25–29 August 2015; Volume 2015, pp. 470–473. [Google Scholar] [CrossRef]
- Shen, C.; Li, J.; Zhang, X.; Shi, Y.; Tang, J.; Cao, H.; Liu, J. A noise reduction method for dual-mass micro-electromechanical gyroscopes based on sample entropy empirical mode decomposition and time-frequency peak filtering. Sensors 2016, 16, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zare, M.; Nazari, M.; Shojaei, A.; Raoufy, M.R.; Mirnajafi-Zadeh, J. Online analysis of local field potentials for seizure detection in freely moving rats. Iran. J. Basic Med. Sci. 2020, 23, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.T.; Hsu, P.C.; Lin, C.F.; Wang, H.J.; Sun, C.K.; Liu, A.B.; Lo, M.T.; Tang, C.J. Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic. IEEE Trans. Biomed. Eng. 2011, 58, 2978–2981. [Google Scholar] [CrossRef] [PubMed]
- Chu, R.K.; Braun, A.R.; Meltzer, J.A. MEG-based detection and localization of perilesional dysfunction in chronic stroke. Neuroimage Clin. 2015, 8, 157–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Zhang, S.; Zhang, H.; Jiang, L.; Zhang, J.; Fang, J. A novel method of evaluating knee joint stability of patients with knee osteoarthritis: Multiscale entropy analysis with a knee-aiming task. Sci. Rep. 2017, 7, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Lin, C.; Ho, Y.H.; Wu, V.C.; Lo, M.T.; Hung, K.Y.; Liu, L.Y.; Lin, L.Y.; Huang, J.W.; Peng, C.K. Heart rhythm complexity impairment in patients undergoing peritoneal dialysis. Sci. Rep. 2016, 6, 28202. [Google Scholar] [CrossRef] [Green Version]
- Lazar, P.; Jayapathy, R.; Torrents-Barrena, J.; Mol, B.; Mohanalin; Puig, D. Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease. Healthc. Technol. Lett. 2016, 3, 230–238. [Google Scholar] [CrossRef]
- Martorano, P.; Falzetti, G.; Pelaia, P. Bispectral index and spectral entropy in neuroanesthesia. J. Neurosurg. Anesth. 2006, 18, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Shin, S.W.; Yoon, J.Y.; Lee, H.J.; Kim, K.H.; Baik, S.W. Effects of etomidate on bispectral index scale and spectral entropy during induction of anesthesia by means of the raw electroencephalographic and electromyographic characteristics. Korean J. Anesth. 2012, 62, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Tiefenthaler, W.; Colvin, J.; Steger, B.; Pfeiffer, K.P.; Moser, P.L.; Walde, J.; Lorenz, I.H.; Kolbitsch, C. How bispectral index compares to spectral entropy of the EEG and A-line ARX index in the same patient. Open Med. 2018, 13, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Punithakumar, K.; Ben Ayed, I.; Islam, A.; Ross, I.G.; Li, S. Regional heart motion abnormality detection via information measures and unscented Kalman filtering. Med. Image Comput. Comput. Assist. Interv. 2010, 13, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Punithakumar, K.; Ben Ayed, I.; Islam, A.; Goela, A.; Ross, I.G.; Chong, J.; Li, S. Regional heart motion abnormality detection: An information theoretic approach. Med. Image Anal. 2013, 17, 311–324. [Google Scholar] [CrossRef]
- Acqknowledge Software. BioPac Systems UK. Available online: https://www.biopac.com/product/acqknowledge-software/ (accessed on 18 February 2021).
- Kaufmann, T.; Sütterlin, S.; Schulz, S.M.; Vögele, C. ARTiiFACT: A tool for heart rate artifact processing and heart rate variability analysis. Behav. Res. Methods 2011, 43, 1161–1170. [Google Scholar] [CrossRef]
- Brammer, J.C. Biopeaks: A graphical user interface for feature extraction from heart- and breathing biosignals. J. Open Source Softw. 2020, 5, 2621. [Google Scholar] [CrossRef]
- Schlögl, A.; Brunner, C. BioSig: A free and open source software library for BCI research. Computer 2008, 41, 44–50. [Google Scholar] [CrossRef]
- Carreiras, C.; Alves, A.P.; Lourenço, A.; Canento, F.; Silva, H.; Fred, A. BioSPPy: Biosignal Processing in Python. 2015. Available online: https://github.com/PIA-Group/ (accessed on 26 January 2021).
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Véhel, J.L.; Legrand, P. Signal and image processing with FracLab. FRACTAL04, Thinking in Patterns: Complexity and Fractals in Nature. In Proceedings of the 8th International Multidisciplinary Conference (Festschrift Mandelbrot (Benoit B) on His 80th Birthday), Vancouver, BC, Canada, 4–7 April 2004; pp. 321–322. [Google Scholar]
- Vila Blanco, N.; Rodríguez-Liñares, L.; Cuesta, P.; Lado, M.J.; Méndez, A.J.; Vila, X.A. gVARVI: A graphical software tool for the acquisition of the heart rate in response to external stimuli. Comput. Methods Programs Biomed. 2016, 132, 197–205. [Google Scholar] [CrossRef]
- Mietus, J.E.; Goldberger, A.L. Heart Rate Variability Analysis with the HRV Toolkit. 2012. Available online: https://archive.physionet.org/tutorials/hrv-toolkit/ (accessed on 20 July 2020).
- Magri, C.; Whittingstall, K.; Singh, V.; Logothetis, N.K.; Panzeri, S. A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neurosci. 2009, 10, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Schoelzel, C.; Chen, S.A. Neurokit2: A python toolbox for neurophysiological signal processing. Behav. Res. 2021. Available online: https://psyarxiv.com/ (accessed on 17 February 2021). [CrossRef] [PubMed]
- Christie, I.C.; Gianaros, P.J. PhysioScripts: An extensible, open source platform for the processing of physiological data. Behav. Res. Methods 2013, 45, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Ince, R.A.; Petersen, R.S.; Swan, D.C.; Panzeri, S. Python for information theoretic analysis of neural data. Front. Neuroinform. 2009, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Ince, R.A.; Bartolozzi, C.; Panzeri, S. An information theoretic library for analysis of neural codes. Neuromorphic Eng. 2009. [Google Scholar] [CrossRef]
- Andreoli, A.; Gravina, R.; Giannantonio, R.; Pierleoni, P.; Fortino, G. Time-domain heart rate variability analysis with the SPINE-HRV toolkit. In Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments, Samos, Greece, 23–25 June 2010; Volume 3, pp. 1–4. [Google Scholar] [CrossRef]
Measure | Abbreviated Name | Search Term |
---|---|---|
Higuchi fractal dimension | HFD | Higuchi AND “fractal dimension” |
Katz fractal dimension | KFD | Katz AND “fractal dimension” |
Allan Factor | AF | “Allan Factor” |
Correlation dimension | D2 | “Correlation dimension” |
Hurst exponent | H | “Hurst exponent” |
Detrended fluctuation analysis | DFA | “Detrended fluctuation analysis” |
Largest Lyapunov exponent | LLE | Various 1 |
Recurrent quantification analysis | RQA | “Recurrent quantification analysis” |
Poincaré plot | PP | “Poincaré plot” NOT “return plot” |
Lempel-Ziv complexity | LZC | “Lempel-Ziv complexity” |
Measure | Abbreviated Name | SEARCH TERM |
---|---|---|
Shannon entropy | SE | “Shannon entropy” |
Rényi entropy | RE | “Renyi entropy” |
Min-entropy | M-E | “Min-entropy” |
Tsallis entropy | TE | “Tsallis entropy” |
Kolmogorov-Sinai entropy | KSE | “Kolmogorov entropy” or “Kolmogorov-Sinai entropy” |
Permutation entropy | PE | “Permutation entropy” |
Conditional entropy/ Corrected conditional entropy | CE/ CCE | “Conditional entropy” |
Approximate entropy | ApEn | “Approximate entropy” |
Sample entropy | SampEn | “Sample entropy” |
Coefficient of Sample entropy | CosEn | “Coefficient of sample entropy” |
Quadratic Sample entropy | QSE | “Quadratic sample entropy” |
Multiscale entropy | MSE | “Multiscale entropy” |
Fuzzy entropy | FE | “Fuzzy entropy” |
Dispersion entropy | DE | “Dispersion entropy” |
Slope entropy | SlopeEn | “Slope entropy” |
Bubble entropy | BE | “Bubble entropy” |
Distribution entropy | DistEn | “Distribution entropy” |
Phase entropy | PhEn | “Phase entropy” |
Spectral entropy | SpEn | “Spectral entropy” |
Differential entropy | DiffEn | “Differential entropy” |
Diffusion entropy | DnEn | “Diffusion entropy” |
Symbolic Dynamics 1 | SymDyn | “Symbolic Dynamics” |
CEPS (149 Measures) | ||
Category | Measures | Counts |
Descriptive measures | e.g., Mean, SD, CV, RoCV | 12 |
Linear measures | e.g., Slope, Intercept, RoSlope, Skewness | 7 |
Time domain | e.g., RMSSD, Hjorth A, M and C | 5 |
Stationarity and c. | Auto-covariance (1-20), ACV | 21 |
Complexity measures | HFD (5-14), H, RQA, EPP (1-10), CCM (1-10), LZC, mLZC, (1-9) | 52 |
Shannon-based | SE, E-MC, AE, EoE, EoDm, KLDm, Tone | 7 |
Ordinal entropies | mPE (1-10), ImPE (1-10), mPM-E (1-10) | 30 |
Other entropies | RCmDE (1-10), DistEn, SlopeEn, BE, PhEn | 14 |
Kubios HRV (49 Measures) | ||
Category | Measures | Counts |
Time/Geometric domain | e.g., Mean HR, TINN, pNN50 | 11 |
Frequency domain | e.g., Welch and autoregressive peak Hz and band powers | 34 |
Complexity | Poincaré SD1, SD2, SD1/SD2 | 3 |
Other | Stress index | 1 |
(A) Measure [Packages] | (B) N PubMed (SCOPUS) Hits | (C) Date of First PubMed Paper | (D) First Paper Citations—GS (S) | (E) Peak Year in PubMed |
---|---|---|---|---|
HFD [7,15,20,33,34,43] | 118 (458) | 1994 [44] | 28 (17) | 2019 |
KFD [15] | 27 (135) | 1994 [45] | 43 (0) | 2019 |
AF [22,33] | 18 (98) | 1996 [46] | 152 (113) | 2004–5 |
D2 [5,20,22,23,29,30,31,33,43,47] | 732 (3869) | 1986 [48] | 113 (70) | 2019 |
H [5,15,20,33,43] | 427 (3464) | 1992 [49] | 0 (2) | 2008 |
DFA [10,15,20,21,22,23,24,26,27,33,34,43,47,50,51,52] | 907 (3288) | 1995 [53] | 3850 (2619) | 2017 |
LLE [5,8,15,22,23,29,30,33,43] | 545 (2470) | 1986 [54] | 1081 (550) | 2019 |
RQA [10,13,20,22,23,30,33,43,50] | 386 (1201) | 1997 [55] | 154 (79) | 2019 |
PP [7,10,13,15,20,21,23,27,30,33,43,47,50,56,57,58,59,60,61] | 339 (870) | 1992 [62] | 472 (292) | 2018 |
LZC [14,15,20,31,33,34] | 201 (547) | 1993 [63] | 20 (16) | 2015 |
(A) Measure [Packages] | (B) N PubMed (SCOPUS) Hits | (C) Date of First PubMed Paper | (D) First Paper Citations—GS (S) | (E) Peak Year in PubMed |
---|---|---|---|---|
SE [8,15,34,64] | 903 (6999) | 1988 [65] | 14 (11) | 2019 |
RE [20,33,60] | 138 (2704) | 2000 [66] | 64 (44) | 2017/19 |
M-E | 15 (500) | 2012 [67] | 172 (114) | 2015–17 |
TE [34] | 93 (1525) | 2001 [68] | 106 (89) | 2015 |
KSE | 129 (1121 a) | 1985 [69] | 201 (119) | 2000 |
PE [9,24] | 234 (1347) | 2002 [70] | 2927 (1977) | 2018 |
CE/CCE [9,15,20,33] | 166 d (1635) | 1998 [71] | 286 (209) | 2019 |
ApEn [9,13,15,20,22,23,24,28,31,33,43,62] | 1199 b (2605) | 1991 [72] | 5394 (3801) | 2013 |
SampEn [9,13,15,20,21,23,33,34,43] | 1033 (2691) | 2000 [73] | 5712 (4126) | 2018 |
CoSEn | 8 (15) | 2011 [74] | 243 (183) | 2018 |
QSE | 4 (11) | 2014 [75] | 13 (11) | n/a (all tied) |
fSampEn | 9 (13) | 2015 [76] | 10 (6) | 2018/20 |
MSE [13,24,28] | 402 (959) | 2002 [77] | 2526 c (1843) | 2018 |
FE [9,24] | 121 (2003) | 1998 [78] | 118 (58) | 2018 |
DE [24] | 9 d | 2016 [79] | 14 (11) | 2017–20 |
SlopeEn | 0 (3) | 2019 [80] | 1 (3) | n/a |
BE | 2 d | 2017 [81] | 42 (34) | n/a (both tied) |
DistEn [9,24] | 31 d | 2015 [82] | 129 (110) | 2019 |
PhEn [24] | 1 d | 2019 [83] | 5 (3) | 2019 |
SpEn [20,33,43] | 302 (1022) | 1991 [84] | 26 (18) | 2019 |
DiffEn | 72 (942) | 1970 [85] | 44 (21) | 2018 |
DnEn | 31 (117) | 2002 [86] | 50 (27) | 2016 |
SymDyn [15,20,24,33,34,87] | 329 (2383) | 1995 [88] | 79 (55) | 2015 |
Author | N Measures | N Papers | Earliest | Institution |
---|---|---|---|---|
Maria Signorini | 17 | 31 | 1994 | Politecnico Milano |
U Rajendra Acharya | 16 | 53 | 2004 | Ngee Ann Polytechnic |
Roberto Hornero | 14 | 102 | 1999 | U Valladolid |
Xiaoli Li | 14 | 82 1 | 2005 | Beijing Normal U |
Alberto Fernández | 14 | 44 | 2006 | U Complutense, Madrid |
David Cuesta-Frau | 14 | 28 2 | 2007 | U Politècnica, València |
Alberto Porta | 13 | 74 | 1994 | U Brescia (now U Milano) |
Andreas Voss | 13 | 38 | 1991 | Institut für Herz-Kreislauf-Forschung, Berlin (now U Applied Sciences, Jena) |
Jamie Sleigh | 13 | 37 | 1995 | Waikato U (now Waikato Hospital) |
Daniel Abásolo | 12 | 57 | 2005 | U Valladolid (now U Surrey) |
Javier Escudero | 12 | 52 | 2006 | U Valladolid (now U Edinburgh) |
Jesús Poza | 8 | 35 | 2005 | U Valladolid |
Marimuthu Palaniswami | 7 | 36 | 2001 | U Melbourne |
Ki Chon | 7 | 34 | 2001 | City U, NY (now U Connecticut) |
Jiann-Shing Shieh | 7 | 34 | 2009 | Yuan Ze U (now National Taiwan U Hospital) |
Nick Stergiou | 6 | 85 | 2003 | U Nebraska |
Men-Tzung Lo | 6 | 33 | 2010 | National Taiwan U Hospital (now National Central U, Chungli) |
Jack J Jiang | 6 | 29 | 2001 | U Wisconsin |
Heikki Huikuri | 5 | 49 | 1996 | U Oulu |
Timo Mäkikallio | 5 | 30 | 1996 | U Oulu |
Chandan Karmakar | 4 | 34 | 2007 | U Melbourne (now Deakin U) |
Steven Pincus | 3 | 74 | 1991 | Yale U (now Chapman U) |
Metin Akay | 3 | 35 | 1996 | Rutgers U (now U Houston) |
Chung-Kang Peng | 2 | 49 | 1992 | Boston U (now Harvard U) |
Chengyu Liu | 2 | 27 | 2011 | Shandong U (now Southeast U) |
Johannes Veldhuis | 1 | 170 | 1994 | U Virginia (now Mayo Clinic) |
Ferdinand Roelfsema | 1 | 60 | 1996 | Leiden U |
Ary Goldberger | 1 | 46 | 1991 | Beth Israel Hospital, Boston (now Harvard U) |
Ali Iranmanesh | 1 | 40 | 1996 | Salem Veterans Affairs Medical Center |
Marijke Frölich | 1 | 28 | 1997 | Leiden U |
Yan Li | 1 | 27 1 | 2009? | U Southern Queensland |
Measure | Original Author/s | Provider | Source Code | Institution | Verification | O, A or D |
---|---|---|---|---|---|---|
AAPE | Azami and Escudero 2016 [109] | DataShare | MATLAB | Edinburgh | Cuesta-Frau/D.M. | D |
AE | Hsu et al., 2019 [110] | Hsu * | MATLAB | Hsinchu | Hsu/D.M. | O |
AF | Allan 1966 [111] | Cornforth * | C++ | (Newcastle) | Cornforth/D.M. | O |
ApEn | Pincus et al., 1991 [72] | Monge | matlabcentral | (Valladolid) | Rohila [HRVAnalysis, Kubios] | O [D] |
BE | Manis et al., 2017 [82] | Manis * | python | Ioannina, Milan | Manis, Rohila, D.P. | O |
BEDE | Qi and Yang 2011 [112] | @ | n/a | Shanghai | n/a | |
CE/CCE | Porta et al., 1998 [71] | Monge | matlabcentral | Milan (Valladolid) | [HRVAnalysis] | D/O |
CCM | Karmakar et al., 2009 [113] | Cornforth * | C++ | Melbourne (Newcastle) | Cornforth/D.M. | A |
CI | Costa et al., 2008 [114] | D.P. (tbc) | MATLAB | (Hertfordshire) | Implementation in progress | T |
CoSEn | Lake and Moorman 2011 [115] | D.P. (tbc) | MATLAB | (Hertfordshire) | Implementation in progress | T |
D2 | Theiler 1987 [116] | Faranda and Vaiente [117] | MATLAB | (Paris-Saclay, Aix Marseille) | Verification in progress | [D] |
DE | Rostaghi and Azami 2016 [79] | DataShare | MATLAB | Edinburgh | PyBioS/tbc | T |
DFA | Peng et al., 1994 [118] | Magris (tbc) | MATLAB | Harvard | Castiglioni/HRVAnalysis | T |
DiffEn | Shi et al., 2013 [119] | D.P. (tbc) | MATLAB | (Hertfordshire) | Implementation in progress | T |
DnEn | Grigolini et al., 2001 [120] | @ | n/a | N Texas | n/a | |
DistEn | Li et al., 2015 [82] | Li * | MATLAB | Harvard | [PyBioS] | [A] |
DPE | Martínez-Rodrigo et al., 2019 [121] | @ | n/a | Castilla-La Mancha (xxx) | n/a | |
EoDm | Nardone 2014 [122] | Nardone * | mathematica | Bruxelles | Nardone/D.P. | O |
EoE | Hsu et al., 2017 [123] | Hsu * | MATLAB | Hsinchu | Hsu/D.M. | O |
EPP | Satti et al., 2019 [124] | Mani * | MATLAB | UCL | Mani [Kubios HRV, HRVAnalysis] | O [A] |
FD | Higuchi 1988 [125] | Monge | matlabcentral | (Valladolid) | Ibáñez-Molina [HRVAnalysis] | A [O] |
FE | Chen 2007 [126] | DataShare | MATLAB | Edinburgh | Rohila [PyBioS] | A [D] |
fSampEn | Sarlabous et al., 2014 [127] | Estrada | MATLAB | Barcelona | Estrada and Torres | O |
H | Hurst 1965 [128] | Davidson | matlabcentral | not known | [HRVAnalysis] | D |
HRA | Jelinek et al., 2011 [129] | n/a | n/a | n/a | n/a | |
ImPE | Azami and Escudero 2016 [130] | DataShare | MATLAB | Edinburgh | Verification in progress | T |
KSE | Grassberger and Procaccia 1983 [131] | n/a | n/a | n/a | n/a | n/a |
LLE | Rosenstein et al., 1993 [132] | Kizilkaya | matlabcentral | n/a | [HRVAnalysis] | [D] |
LZC | Lempel and Ziv 1976 [133] | Thai | matlabcentral | Ibáñez-Molina | O (tbc) | |
mFmDFA | Castiglioni et al., 2019 [134] | Castiglioni * | MATLAB | Milan | Implementation in progress | T |
mLZC | Ibáñez-Molina et al., 2015 [135] | Ibáñez-Molina * | MATLAB | Jaén | Ibáñez-Molina | O (tbc) |
MSE | Costa et al., 2002 [77] | MATLAB | Harvard | Reinertsen/Da Poian/[PyBioS] | D | |
PE | Bandt and Pompe 2002 [70] | DataShare | MATLAB | (Edinburgh) | Rohila, Zunino [PyBioS] | O [D] |
PhEn | Rohila and Sharma 2019 [83] | Rohila * | MATLAB | (Roorkee) | Rohila [PyBioS] | O [A] |
PM-E | Zunino et al., 2015 [136] | Zunino * | MATLAB | La Plata | Zunino | O |
QSE | Lake 2011 [74] | D.P. (tbc) | MATLAB | (Hertfordshire) | Implementation in progress | T |
RE | Rényi 1961 [137] | Mathworks | matlabcentral | (Shanghai) | Verification in progress | T |
RQA | Zbilut et al., 2002 [138] | Mathworks | matlabcentral | [Kubios HRV] | [D] | |
SampEn | Azami and Escudero 2016 [139] | DataShare | MATLAB | Edinburgh | Rohila [Kubios HRV, PyBioS] | O [pD 1] |
SE | Shannon 1948 [97] | Mathworks | matlabcentral | various | [HRVAnalysis] | [O 2] |
SlopeEn | Cuesta-Frau 2019 [80] | Cuesta-Frau * | MATLAB | Valencia | Cuesta-Frau/D.M. | O |
SpEn | Inouye et al., 1991 [84] | tbc | Implementation in progress | T | ||
SymDyn | Voss et al., 1995 [88] | tbc | tbc | tbc | Not yet implemented | |
TE | Tsallis 1988 [140] | Guan | matlabcentral | (Shanghai) | Verification in progress | T |
T-E | Oida et al., 1997 [141] | Karmakar | MATLAB | Kyoto | Karmakar/D.P. | O |
VM | Bernaola-Galván et al., 2017 [40] | Bernaola-Galván * | Fortran, MATLAB | Málaga | Implementation in progress | T |
Measure | A: d and/or c | B: s, m and/or l | C: Noise | D: Filtered | E: Sampling | F: s/ns, l/nl |
---|---|---|---|---|---|---|
AAPE | d, c 1 | Ts, m, Tl | T | T | T | s, ns, l, nl |
AE | d, Tc | s, m, Tl | y | T | y | Tns, nl |
AF | d | l | T | T | T | s, Tnl |
ApEn | d, c | l | y | y, a | y | s, nl |
BE | d, c | s, m, l | n | T | T | Tns, nl |
CE/CCE | d, c | Ts, m, Tl | y | a | y | s, nl |
CCM | d | Ts, m, Tl | y | T | y | s, ns, l, nl |
CI | d, c | l | y | T | y | s, nl |
CosEn | d, c | s | y | a | y | s, nl |
D2 | d, c | l | y | y, T | y | s, nl |
DE | Td, c | Ts, m, l | y | T | y | ns, nl |
DFA | d, c | s, m, Tl | T | a | y | ns, nl |
DiffEn | Td, c | m, l | T | y | T | s, Tns, l, Tnl |
DnEn | d, c | l | T | T | T | s, nl |
DistEn | d, c | s, m, Tl | T | T | y | ns, nl |
EoDm | d, c | T | T | T | T | T |
EoE | d, Tc | s, m, Tl | y | T | y | Tns, nl |
EPP | d, c 1 | s, m, l | T | y, a | y | s, ns, l, nl |
FD | d, c | s, m, l | n | y, a | T | ns, nl |
FE | d, c | s, m | n | T | T | ns, nl |
fSampEn | d, c | m, Tl | T | y | y | s, nl |
H | d, c | Ts, m, l | T | y, T | y | s, nl |
IMPE | d, c 1 | s, m, Tl | n | T | T | ns, nl |
KSE * | Td, c | Ts, Tm, l | y | T | y | s, nl |
LLE | d, c | m, l | y | y, a | y | s, nl |
LSampEn * | d | s | n | T | T | s, nl |
LZC | d, c | s, m, l | n | a | T | ns, nl |
mFmDFA | d, c | s, m, l | T | y, a | T | ns, nl |
mLZC | Td, c | s, m, Tl | T 2 | T | T | ns, nl |
MSE | d, c | m, Tl | y | y, a | y | s, nl |
PE | d, c 1 | s, m, l | n | y, T | n | ns, nl |
PhEn | d, c | s, m, l | n 3 | T | y | ns, nl |
PM-E | d, c 1 | s, m, l | n | T | T | ns, nl |
QSE | d, c | s | y | y | y | s, nl |
RCmDE | Td, c | s, m, l | n | y | y | ns, nl |
RCmFE σ | Td, c | s, m, l | T | T | T | ns, nl |
RCmSE σ | d, c | Tm, l | T | T | T | Tns, nl |
RE | d | Ts, m, Tl | T | T | T | ns, nl |
RQA | d, c | s, m, Tl | n | y, a | y | ns, nl |
SampEn | d, c | m, Tl | y | y, a | y | s, nl |
SE | d | s, m, l | y | T | T | s, nl |
SlopeEn | d | s, m, l | n | y | T | ns, nl |
SpEn | d, c | s, m, Tl | y | y | y | s, l |
SymDyn | d, c | Ts, m, l | T | T | T | ns, nl |
TE | d | Ts, Tm, Tl | T | T | T | Tns, nl |
T-E | d | M 4 | y | T | T | s, ns, nl |
VM | d, Tc | s, m, l | T | T | T | ns, nl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayor, D.; Panday, D.; Kandel, H.K.; Steffert, T.; Banks, D. CEPS: An Open Access MATLAB Graphical User Interface (GUI) for the Analysis of Complexity and Entropy in Physiological Signals. Entropy 2021, 23, 321. https://doi.org/10.3390/e23030321
Mayor D, Panday D, Kandel HK, Steffert T, Banks D. CEPS: An Open Access MATLAB Graphical User Interface (GUI) for the Analysis of Complexity and Entropy in Physiological Signals. Entropy. 2021; 23(3):321. https://doi.org/10.3390/e23030321
Chicago/Turabian StyleMayor, David, Deepak Panday, Hari Kala Kandel, Tony Steffert, and Duncan Banks. 2021. "CEPS: An Open Access MATLAB Graphical User Interface (GUI) for the Analysis of Complexity and Entropy in Physiological Signals" Entropy 23, no. 3: 321. https://doi.org/10.3390/e23030321