# Performance Evaluation of Construction Companies Using Integrated Entropy–Fuzzy VIKOR Model

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Research Development

#### 2.2. Proposed Entropy–Fuzzy VIKOR Model

_{ij}” of the index value of alternative m under criterion n.

_{j}” of criterion n.

_{j}” of criterion n.

_{ij}is the lowest ratio from the period of study for alternative i with respect to criterion j.

_{ij}is the average ratio from the period of study for alternative i with respect to criterion j.

_{ij}is the highest ratio from the period of study for alternative i with respect to criterion j.

_{ij}, b

_{ij}and c

_{ij}. DAR and DER should be minimized by assigning the smallest value for a

_{ij}, b

_{ij}and c

_{ij}.

_{ij}) for $i=1,\dots ,m$, $j=1,\dots ,n$. ${f}_{ij}$ refers to the score for alternative i with criterion j. The normalized fuzzy decision matrix is formed, and the equation to determine the new score of the alternative i with criterion j is shown below:

_{i}), regret (R

_{i}) and VIKOR indices (Q

_{i}) values, $i=1,\dots ,m$. v refers to the strategy of maximum group utility weight, while 1-v refers to the individual regret weight. When v = 0.5, the strategy could be compromised.

#### 2.3. VIKOR Model

_{ij}) for $i=1,\dots ,m$, $j=1,\dots ,n$. ${f}_{ij}$ refers to the score for alternative i with criterion j. The normalized decision matrix is formed, and the equation to determine the new score of the alternative i with criterion j is shown below:

_{i}), regret (R

_{i}) and VIKOR indices (Q

_{i}) values, $i=1,\dots ,m$. v refers to the strategy of maximum group utility weight, while 1-v refers to the individual regret weight. When v = 0.5, the strategy could be compromised.

## 3. Empirical Results

_{i}) and regret (R

_{i}) were determined by exploiting Equations (6) and (7), respectively.

_{i}were determined by using Equation (8). Based on the obtained entropy–fuzzy VIKOR scores (Q

_{i}), the alternative with the smallest Q

_{i}value was specified to be the best construction company.

_{i}) and the ranking of the companies were identified based on the proposed model. The Q

_{i}ranged from 0.090 to 0.998 according to the optimal solution of the proposed model that integrates the entropy weight and fuzzy VIKOR model. According to the proposed entropy–fuzzy VIKOR model, the decision alternative with the lowest Q value was determined as the best alternative or best construction company. Table 7 shows the results and findings generated by the proposed entropy–fuzzy VIKOR model. The ranking depicts that the best construction company in terms of financial performance was ECONBHD, followed by GADANG, KIMLUN, DKLS, KERJAYA, PTARAS, MITRA, MELATI, PRTASCO, GBGAQRS, BREM, HSL, GAMUDA, IJM, CRESBLD, EKOVEST, GKENT, HOHUP, WCT and lastly MUHIBAH. In this study, ECONBHD achieved the lowest value of Q, and thus ECONBHD outperformed the other construction companies in terms of financial performance. The results of this study show that the proposed model is applicable to solve the MCDM problems as illustrated by previous studies, such as the selection of sustainable third-party reverse logistics providers [10] and multi-criteria inventory classification problems [64] using the VIKOR model. The ranking of the companies was important in the financial performance evaluation because it helped the companies to identify their ranking among the competitors in the same field for benchmarking purposes [6].

_{i}) and optimal ranking of construction companies between the VIKOR model and entropy–fuzzy VIKOR model was performed and presented in Table 8.

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Khan, R.A.; Liew, M.S.; Ghazali, Z.B. Malaysian construction sector and Malaysia vision 2020: Developed nation status. Procedia Soc. Behav. Sci.
**2014**, 109, 507–513. [Google Scholar] [CrossRef] [Green Version] - Malaysia Construction Market-Growth, Trends, and Forecast (2020–2025). Available online: https://www.mordorintelligence.com/industry-reports/malaysia-construction-market-growth-trends-and-forecast-2019-2024?cv=1 (accessed on 19 August 2020).
- What Is the Impact of COVID-19 on Malaysia’s Construction Industry & What Can Be Done? Available online: https://www.iproperty.com.my/news/covid-19-impact-malaysia-construction-industry-what-can-be-done/?cv=1 (accessed on 19 August 2020).
- Malaysia: Survival of Companies Impacted by the COVID-19 Outbreak. Available online: https://www.bakermckenzie.com/en/insight/publications/2020/03/survival-of-companies-impacted-by-covid19 (accessed on 19 August 2020).
- Shen, H.; Fu, M.; Pan, H.; Yu, Z.; Chen, Y. The impact of COVID-19 pandemic on firm performance. Emerg. Mark. Financ. Trade
**2020**, 56, 2213–2230. [Google Scholar] [CrossRef] - Abdel-Basset, M.; Ding, W.; Mohamed, R.; Metawa, N. An integrated plithogenic MCDM approach for financial performance evaluation of manufacturing industries. Risk Manag.
**2020**, 22, 192–218. [Google Scholar] [CrossRef] - Dalfard, V.M.; Sohrabian, A.; Najafabadi, A.M.; Alvani, J. Performance evaluation and prioritization of leasing companies using the super efficiency Data Envelopment Analysis model. Acta Polytech. Hung.
**2012**, 9, 183–194. [Google Scholar] - Hasanloo, S.; Karim, E.; Mehregan, M.R.; Tehrani, R. Evaluating performance of companies by new management tools. J. Nat. Soc. Sci.
**2013**, 2, 165–169. [Google Scholar] - Zamani, L.; Beegam, R.; Borzoian, S. Portfolio selection using Data Envelopment Analysis (DEA): A case of select Indian investment companies. Int. J. Curr. Res. Acad. Rev.
**2014**, 2, 50–55. [Google Scholar] - Wen, Z.; Liao, H.; Zavadskas, E.K. MACONT: Mixed aggregation by comprehensive normalization technique for multi-criteria analysis. Informatica
**2020**, 31, 857–880. [Google Scholar] - Ginevičius, R.; Podvezko, V. Assessing the financial state of construction enterprises. Technol. Econ. Dev. Econ.
**2006**, 12, 188–194. [Google Scholar] [CrossRef] - Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinios Press: Urbana, AL, USA, 1947. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech.
**1948**, 27, 379–423. [Google Scholar] [CrossRef] [Green Version] - Lu, J.; Wei, C.; Wu, J.; Wei, G. TOPSIS method for probabilistic linguistic MAGDM with entropy weight and its application to supplier selection of new agricultural machinery products. Entropy
**2019**, 21, 953. [Google Scholar] [CrossRef] [Green Version] - Furtan, W.H. Entropy, information and economics in firm decision making. Int. J. Syst. Sci.
**1977**, 8, 1105–1112. [Google Scholar] [CrossRef] - Yang, J.; Qiu, W. A measure of risk and a decision-making model based on expected utility and entropy. Eur. J. Oper. Res.
**2005**, 164, 792–799. [Google Scholar] [CrossRef] - Muley, A.A.; Bajaj, V.H. Fuzzy multiple attribute decision making by utilizing entropy-based approach. Int. J. Agric. Stat. Sci.
**2009**, 5, 613–621. [Google Scholar] - Chen, C.H. A novel multi-criteria decision-making model for building material supplier selection based on entropy-AHP weighted TOPSIS. Entropy
**2020**, 22, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yan, Z.; Yang, W.; Huang, X.; Shi, X.; Zhang, W.; Zhang, S. A reputation-enhanced hybrid approach for supplier selection with intuitionistic fuzzy evaluation information. Mathematics
**2019**, 7, 298. [Google Scholar] [CrossRef] [Green Version] - Wang, Q.; Liu, Y.; Zhang, X.; Fu, H.; Lin, S.; Song, S.; Niu, C. Study on an AHP-entropy-ANFIS model for the prediction of the unfrozen water content of sodium-bicarbonate-type salinization frozen soil. Mathematics
**2020**, 8, 1209. [Google Scholar] [CrossRef] - Yang, X.; Zhao, X.; Gong, X.; Yang, X.; Huang, C. Systemic importance of China’s financial institutions: A jump volatility spillover network review. Entropy
**2020**, 22, 588. [Google Scholar] [CrossRef] - Krylovas, A.; Kosareva, N.; Dadelo, S. European countries ranking and clustering solution by children’s physical activity and human development index using entropy-based methods. Mathematics
**2020**, 8, 1705. [Google Scholar] [CrossRef] - Batool, B.; Ahmad, M.; Abdullah, S.; Ashraf, S.; Chinram, R. Entropy based Pythagorean probabilistic hesitant fuzzy decision making technique and its application for fog-haze factor assessment problem. Entropy
**2020**, 22, 318. [Google Scholar] [CrossRef] [Green Version] - Shrivathsan, A.D.; Krishankumar, R.; Mishra, A.R.; Ravichandran, K.S.; Kar, S.; Badrinath, V. An integrated decision approach with probabilistic linguistic information for test case prioritization. Mathematics
**2020**, 8, 1857. [Google Scholar] [CrossRef] - Abidin, S.N.Z.; Jaaman, S.H.; Ismail, M.; Bakar, A.S.A. Clustering stock performance considering investor preferences using a fuzzy inference system. Symmetry
**2020**, 12, 1148. [Google Scholar] [CrossRef] - Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res.
**2004**, 156, 445–455. [Google Scholar] [CrossRef] - Opricovic, S. Multi-Criteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998. [Google Scholar]
- Tzeng, G.H.; Lin, C.W.; Opricovic, S. Multi-criteria analysis of alternative-fuel buses for public transportation. Energy Policy
**2005**, 33, 1373–1383. [Google Scholar] [CrossRef] - Carlsson, C.; Fullér, R. Fuzzy multiple criteria decision making: Recent developments. Fuzzy Sets Syst.
**1996**, 78, 139–153. [Google Scholar] [CrossRef] [Green Version] - Zhou, W.; Xu, Z. Extended intuitionistic fuzzy sets based on the hesitant fuzzy membership and their application in decision making with risk preference. Int. J. Intell. Syst.
**2018**, 33, 417–443. [Google Scholar] [CrossRef] - Memari, A.; Dargi, A.; Jokar, M.R.A.; Ahmad, R.; Rahim, A.R.A. Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. J. Manuf. Syst.
**2019**, 50, 9–24. [Google Scholar] [CrossRef] - Petrović, G.; Mihajlović, J.; Ćojbašić, Ž.; Madić, M.; Marinković, D. Comparison of three fuzzy MCDM methods for solving the supplier selection problem. Facta Univ. Ser. Mech. Eng.
**2019**, 17, 455–469. [Google Scholar] [CrossRef] - Kaya, İ.; Çolak, M.; Terzi, F. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Rev.
**2019**, 24, 207–228. [Google Scholar] [CrossRef] - Haider, H.; Ghumman, A.R.; Al-Salamah, I.S.; Thabit, H. Assessment framework for natural groundwater contamination in arid regions: Development of indices and wells ranking system using fuzzy VIKOR method. Water
**2020**, 12, 423. [Google Scholar] [CrossRef] [Green Version] - Meksavang, P.; Shi, H.; Lin, S.M.; Liu, H.C. An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry. Symmetry
**2019**, 11, 468. [Google Scholar] [CrossRef] [Green Version] - Sunarsih, S.; Pamurti, R.D.; Khabibah, S.; Hadiyanto, H. Analysis of priority scale for watershed reforestation using trapezoidal fuzzy VIKOR method: A case study in Semarang, Central Java Indonesia. Symmetry
**2020**, 12, 507. [Google Scholar] [CrossRef] [Green Version] - Taylan, O.; Alamoudi, R.; Kabli, M.; AlJifri, A.; Ramzi, F.; Herrera-Viedma, E. Assessment of energy systems using extended fuzzy AHP, fuzzy VIKOR, and TOPSIS approaches to manage non-cooperative opinions. Sustainability
**2020**, 12, 2745. [Google Scholar] [CrossRef] [Green Version] - Salimi, A.H.; Noori, A.; Bonakdari, H.; Masoompour Samakosh, J.; Sharifi, E.; Hassanvand, M.; Gharabaghi, B.; Agharazi, M. Exploring the role of advertising types on improving the water consumption behavior: An application of integrated fuzzy AHP and fuzzy VIKOR method. Sustainability
**2020**, 12, 1232. [Google Scholar] [CrossRef] [Green Version] - He, T.; Wei, G.; Lu, J.; Wei, C.; Lin, R. Pythagorean 2-tuple linguistic VIKOR method for evaluating human factors in construction project management. Mathematics
**2019**, 7, 1149. [Google Scholar] [CrossRef] [Green Version] - Dong, J.; Li, R.; Huang, H. Performance evaluation of residential demand response based on a modified fuzzy VIKOR and scalable computing method. Energies
**2018**, 11, 1097. [Google Scholar] [CrossRef] [Green Version] - Opricovic, S. Fuzzy VIKOR with an application to water resources planning. Expert Syst. Appl.
**2011**, 38, 12983–12990. [Google Scholar] [CrossRef] - Price, J.E.; Haddock, M.D.; Brock, H.R. College Accounting, 10th ed.; Macmillan/McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Akguc, O. Financial Statement Analysis, 13th ed.; Arayis Publication: Istanbul, Turkey, 2010. [Google Scholar]
- Khrawish, H.A. Determinants of commercial banks performance: Evidence from Jordan. Int. J. Financ. Econ.
**2011**, 81, 148–159. [Google Scholar] - Liew, K.F.; Lam, W.S.; Lam, W.H. An empirical evaluation on the efficiency of the companies in Malaysia with Data Envelopment Analysis model. Adv. Sci. Lett.
**2017**, 23, 8264–8267. [Google Scholar] - Lam, W.S.; Liew, K.F.; Lam, W.H. An optimal control on the efficiency of technology companies in Malaysia with Data Envelopment Analysis model. J. Telecommun. Electron. Comput. Eng.
**2018**, 10, 107–111. [Google Scholar] - Company Announcements|Bursa Malaysia Market. Available online: http://www.bursamalaysia.com/market/listed-companies/company-announcements/#/?category=all (accessed on 19 August 2020).
- Li, X.X.; Wang, K.S.; Liu, L.W.; Xin, J.; Yang, H.R.; Gao, C.Y. Application of the entropy weight and TOPSIS method in safety evaluation of coal mines. Procedia Eng.
**2011**, 26, 2085–2091. [Google Scholar] [CrossRef] [Green Version] - Onar, S.C.; Oztaysi, B.; Kahraman, C. Strategic decision selection using hesitant fuzzy TOPSIS and interval type-2 fuzzy AHP: A case study. Int. J. Comput. Intell. Syst.
**2014**, 7, 1002–1021. [Google Scholar] [CrossRef] [Green Version] - Kim, A.R. A study on competitiveness analysis of ports in Korea and China by entropy weight TOPSIS. Asian J. Shipp. Logist.
**2016**, 32, 187–194. [Google Scholar] [CrossRef] - Opricovic, S.; Tzeng, G.H. Multicriteria planning of post-earthquake sustainable reconstruction. Comput.-Aided Civ. Infrastruct. Eng.
**2002**, 17, 211–220. [Google Scholar] [CrossRef] - Opricovic, S.; Tzeng, G.H. Fuzzy multicriteria model for post-earthquake land-use planning. Nat. Hazards Rev.
**2003**, 4, 59–64. [Google Scholar] [CrossRef] - Opricovic, S.; Tzeng, G.H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res.
**2007**, 178, 514–529. [Google Scholar] [CrossRef] - Ou Yang, Y.P.; Shieh, H.M.; Leu, J.D. A VIKOR-based multiple criteria decision method for improving information security risk. Int. J. Inf. Technol. Decis. Mak.
**2009**, 8, 267–287. [Google Scholar] [CrossRef] - Tzeng, G.H.; Teng, M.H.; Chen, J.J.; Opricovic, S. Multicriteria selection for a restaurant location in Taipei. Int. J. Hosp. Manag.
**2002**, 21, 171–187. [Google Scholar] [CrossRef] - Zadeh, L.A. Fuzzy sets. Inf. Control
**1965**, 8, 338–356. [Google Scholar] [CrossRef] [Green Version] - Perçin, S.; Aldalou, E. Financial performance evaluation of Turkish airline companies using integrated fuzzy AHP fuzzy TOPSIS model. Int. J. Econ. Adm. Stu.
**2018**, 18, 583–598. [Google Scholar] [CrossRef] - Kuo, M.S.; Tzeng, G.H.; Huang, W.C. Group decision-making based on concepts of ideal and anti-ideal points in a fuzzy environment. Math. Comput. Model.
**2007**, 45, 324–339. [Google Scholar] [CrossRef] - Sun, C.C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst. Appl.
**2010**, 37, 7745–7754. [Google Scholar] [CrossRef] - Tong, L.I.; Chen, C.C.; Wang, C.H. Optimization of multi-response processes using the VIKOR method. Int. J. Adv. Manuf. Technol.
**2007**, 31, 1049–1057. [Google Scholar] [CrossRef] - Chang, C.L.; Hsu, C.H. Multi-criteria analysis via the VIKOR method for prioritizing land-use restraint strategies in the Tseng-Wen reservoir watershed. J. Environ. Manag.
**2009**, 90, 3226–3230. [Google Scholar] [CrossRef] - Radhika, S.; Kumar, D.S.; Swapna, D. VIKOR method for multi criteria decision making in academic staff selection. J. Prod. Res. Manag.
**2013**, 3, 30–35. [Google Scholar] - Ali, M.; Yadav, A.; Anis, M.; Shah, R.K. Evaluation of hazardous waste management by using VIKOR: A case study of USA States. Mod. Appl. Sci.
**2017**, 11, 180–187. [Google Scholar] [CrossRef] - Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica
**2015**, 26, 435–451. [Google Scholar] [CrossRef]

Level | |
---|---|

Objective | Evaluation of the Financial Performance of Construction Companies |

Decision Criteria | Return on equity (ROE) |

(Financial Ratios) | Return on asset (ROA) |

Earnings per share (EPS) | |

Debt to equity ratio (DER) | |

Debt to assets ratio (DAR) | |

Current ratio (CR) | |

Decision Alternatives | BREM |

(Construction | CRESBLD |

Companies) | DKLS |

ECONBHD | |

EKOVEST | |

GADANG | |

GAMUDA | |

GBGAQRS | |

GKENT | |

HOHUP | |

HSL | |

IJM | |

KERJAYA | |

KIMLUN | |

MELATI | |

MITRA | |

MUHIBAH | |

PRTASCO | |

PTARAS | |

WCT |

Companies | CR | DAR | DER | EPS | ROA | ROE |
---|---|---|---|---|---|---|

BREM | (2.467, 4.694, 7.132) | (0.077, 0.132, 0.240) | (0.083, 0.157, 0.316) | (0.026, 0.063, 0.130) | (1.745, 5.043, 11.186) | (2.296, 5.664, 12.117) |

CRESBLD | (0.615, 1.643, 4.115) | (0.235, 0.276, 0.360) | (0.307, 0.387, 0.563) | (0.037, 0.046, 0.050) | (2.358, 2.770, 3.098) | (3.150, 3.830, 4.123) |

DKLS | (37.573, 68.835, 114.062) | (0.003, 0.004, 0.004) | (0.003, 0.004, 0.004) | (0.094, 0.147, 0.185) | (3.732, 5.809, 7.722) | (3.745, 5.832, 7.750) |

ECONBHD | (10.872, 393.668, 1044.293) | (0.000, 0.001, 0.002) | (0.000, 0.001, 0.002) | (0.005, 0.020, 0.043) | (4.809, 12.112, 17.601) | (4.818, 12.126, 17.617) |

EKOVEST | (0.692, 1.123, 1.837) | (0.205, 0.406, 0.555) | (0.258, 0.783, 1.245) | (0.010, 0.065, 0.192) | (0.785, 5.702, 16.555) | (0.988, 11.907, 37.165) |

GADANG | (19.045, 175.893, 409.196) | (0.001, 0.006, 0.020) | (0.001, 0.006, 0.020) | (0.020, 0.043, 0.066) | (3.502, 6.671, 11.924) | (3.572, 6.699, 11.953) |

GAMUDA | (1.087, 1.629, 2.054) | (0.357, 0.385, 0.403) | (0.555, 0.626, 0.676) | (0.092, 0.248, 0.498) | (2.970, 7.266, 12.883) | (4.619, 11.857, 20.772) |

GBGAQRS | (1.007, 15.843, 67.467) | (0.009, 0.124, 0.237) | (0.009, 0.151, 0.310) | (0.007, 0.020, 0.038) | (1.068, 2.775, 5.957) | (1.287, 3.122, 6.881) |

GKENT | (1.275, 1.464, 1.871) | (0.420, 0.562, 0.618) | (0.723, 1.342, 1.621) | (0.082, 0.152, 0.226) | (4.780, 10.416, 14.886) | (12.438, 23.787, 34.063) |

HOHUP | (1.931, 2.429, 2.794) | (0.360, 0.431, 0.489) | (0.562, 0.775, 0.957) | (0.005, 0.059, 0.179) | (0.330, 4.892, 14.369) | (0.613, 7.907, 22.441) |

HSL | (2.234, 2.764, 3.394) | (0.188, 0.241, 0.308) | (0.231, 0.322, 0.445) | (0.064, 0.084, 0.125) | (4.386, 5.769, 9.699) | (5.744, 7.532, 12.169) |

IJM | (1.399, 2.273, 3.011) | (0.305, 0.324, 0.341) | (0.438, 0.480, 0.517) | (0.054, 0.082, 0.111) | (2.144, 3.039, 4.015) | (3.084, 4.518, 6.040) |

KERJAYA | (8.762, 65.731, 171.582) | (0.005, 0.013, 0.042) | (0.005, 0.014, 0.044) | (0.030, 0.058, 0.101) | (3.640, 7.323, 11.589) | (3.659, 7.414, 11.688) |

KIMLUN | (40.845, 78.293, 102.539) | (0.002, 0.003, 0.006) | (0.002, 0.003, 0.006) | (0.045, 0.057, 0.072) | (5.755, 6.958, 8.172) | (5.792, 6.977, 8.184) |

MELATI | (0.508, 14.647, 37.898) | (0.011, 0.046, 0.163) | (0.011, 0.053, 0.194) | (0.013, 0.070, 0.247) | (0.781, 4.426, 15.612) | (0.801, 4.588, 15.782) |

MITRA | (0.116, 42.494, 128.804) | (0.002, 0.072, 0.143) | (0.002, 0.082, 0.166) | (0.009, 0.033, 0.052) | (1.451, 5.059, 8.293) | (1.615, 5.358, 8.312) |

MUHIBAH | (0.951, 1.076, 1.200) | (0.667, 0.745, 0.811) | (2.003, 3.079, 4.302) | (0.033, 0.153, 0.440) | (0.803, 4.072, 12.201) | (3.108, 14.210, 36.642) |

PRTASCO | (5.442, 6.604, 8.688) | (0.046, 0.064, 0.078) | (0.048, 0.068, 0.084) | (0.000, 0.048, 0.076) | (0.014, 7.628, 11.783) | (0.015, 8.189, 12.673) |

PTARAS | (7.606, 10.674, 11.892) | (0.094, 0.098, 0.103) | (0.103, 0.109, 0.115) | (0.028, 0.181, 0.405) | (2.021, 10.805, 23.721) | (2.230, 12.002, 26.368) |

WCT | (2.125, 7.311, 25.602) | (0.274, 0.385, 0.459) | (0.377, 0.645, 0.847) | (0.001, 0.015, 0.067) | (0.025, 0.297, 1.322) | (0.034, 0.534, 2.397) |

Financial Ratios | Best (${f}_{j}*$) | Worst (${f}_{j}{}^{-}$) |
---|---|---|

CR | (40.845, 393.668, 1044.293) | (0.116, 1.076, 1.200) |

DAR | (0.000, 0.001, 0.002) | (0.667, 0.745, 0.811) |

DER | (0.000, 0.001, 0.002) | (2.003, 3.079, 4.302) |

EPS | (0.094, 0.248, 0.498) | (0.000, 0.015, 0.038) |

ROA | (5.755, 12.112, 23.721) | (0.014, 0.297, 1.322) |

ROE | (12.438, 23.787, 37.165) | (0.015, 0.534, 2.397) |

**Table 4.**The normalized fuzzy decision matrix for the companies with respect to all financial ratios.

Companies | CR | DAR | DER | EPS | ROA | ROE |
---|---|---|---|---|---|---|

BREM | (0.366, 0.385, 0.386) | (0.019, 0.029, 0.048) | (0.011, 0.014, 0.020) | (0.058, 0.063, 0.064) | (0.028, 0.024, 0.023) | (0.046, 0.044, 0.040) |

CRESBLD | (0.384, 0.388, 0.387) | (0.058, 0.061, 0.073) | (0.042, 0.034, 0.035) | (0.048, 0.069, 0.077) | (0.024, 0.032, 0.037) | (0.042, 0.048, 0.053) |

DKLS | (0.031, 0.321, 0.346) | (0.001, 0.001, 0.000) | (0.000, 0.000, 0.000) | (0.000, 0.034, 0.054) | (0.014, 0.022, 0.029) | (0.039, 0.043, 0.048) |

ECONBHD | (0.286, 0.000, 0.000) | (0.000, 0.000, 0.000) | (0.000, 0.000, 0.000) | (0.075, 0.078, 0.079) | (0.007, 0.000, 0.011) | (0.034, 0.028, 0.032) |

EKOVEST | (0.383, 0.388, 0.388) | (0.051, 0.089, 0.112) | (0.035, 0.069, 0.078) | (0.071, 0.062, 0.053) | (0.035, 0.022, 0.013) | (0.052, 0.029, 0.000) |

GADANG | (0.208, 0.215, 0.236) | (0.000, 0.001, 0.004) | (0.000, 0.000, 0.001) | (0.063, 0.070, 0.075) | (0.016, 0.019, 0.021) | (0.040, 0.041, 0.041) |

GAMUDA | (0.379, 0.388, 0.388) | (0.088, 0.085, 0.082) | (0.075, 0.055, 0.043) | (0.002, 0.000, 0.000) | (0.020, 0.017, 0.020) | (0.035, 0.029, 0.026) |

GBGAQRS | (0.380, 0.374, 0.364) | (0.002, 0.027, 0.048) | (0.001, 0.013, 0.019) | (0.073, 0.078, 0.079) | (0.033, 0.032, 0.032) | (0.050, 0.050, 0.049) |

GKENT | (0.377, 0.388, 0.388) | (0.103, 0.124, 0.125) | (0.098, 0.118, 0.102) | (0.011, 0.033, 0.047) | (0.007, 0.006, 0.016) | (0.000, 0.000, 0.005) |

HOHUP | (0.371, 0.387, 0.388) | (0.089, 0.095, 0.099) | (0.076, 0.068, 0.060) | (0.075, 0.064, 0.055) | (0.038, 0.025, 0.017) | (0.053, 0.038, 0.024) |

HSL | (0.368, 0.387, 0.387) | (0.046, 0.053, 0.062) | (0.031, 0.028, 0.028) | (0.025, 0.056, 0.064) | (0.010, 0.022, 0.025) | (0.030, 0.039, 0.040) |

IJM | (0.376, 0.387, 0.388) | (0.075, 0.071, 0.069) | (0.059, 0.042, 0.032) | (0.034, 0.057, 0.067) | (0.025, 0.031, 0.036) | (0.042, 0.047, 0.050) |

KERJAYA | (0.306, 0.324, 0.325) | (0.001, 0.003, 0.008) | (0.001, 0.001, 0.003) | (0.054, 0.064, 0.069) | (0.015, 0.016, 0.022) | (0.040, 0.040, 0.041) |

KIMLUN | (0.000, 0.312, 0.351) | (0.000, 0.000, 0.001) | (0.000, 0.000, 0.000) | (0.041, 0.065, 0.074) | (0.000, 0.018, 0.028) | (0.030, 0.041, 0.047) |

MELATI | (0.385, 0.375, 0.375) | (0.003, 0.010, 0.033) | (0.001, 0.005, 0.012) | (0.069, 0.060, 0.043) | (0.035, 0.026, 0.015) | (0.053, 0.046, 0.035) |

MITRA | (0.388, 0.347, 0.341) | (0.000, 0.016, 0.029) | (0.000, 0.007, 0.010) | (0.072, 0.073, 0.077) | (0.030, 0.024, 0.028) | (0.049, 0.045, 0.047) |

MUHIBAH | (0.380, 0.388, 0.388) | (0.164, 0.164, 0.164) | (0.271, 0.271, 0.271) | (0.052, 0.032, 0.010) | (0.035, 0.028, 0.021) | (0.042, 0.023, 0.001) |

PRTASCO | (0.338, 0.383, 0.386) | (0.011, 0.014, 0.015) | (0.006, 0.006, 0.005) | (0.079, 0.068, 0.073) | (0.040, 0.015, 0.022) | (0.056, 0.038, 0.040) |

PTARAS | (0.317, 0.379, 0.384) | (0.023, 0.021, 0.021) | (0.014, 0.009, 0.007) | (0.056, 0.023, 0.016) | (0.026, 0.004, 0.000) | (0.046, 0.028, 0.017) |

WCT | (0.369, 0.382, 0.379) | (0.067, 0.085, 0.093) | (0.051, 0.057, 0.053) | (0.079, 0.079, 0.074) | (0.040, 0.040, 0.040) | (0.056, 0.056, 0.056) |

Companies | S_{i} | R_{i} |
---|---|---|

BREM | (0.528, 0.558, 0.581) | (0.366, 0.385, 0.386) |

CRESBLD | (0.597, 0.631, 0.663) | (0.384, 0.388, 0.387) |

DKLS | (0.086, 0.421, 0.477) | (0.039, 0.321, 0.346) |

ECONBHD | (0.402, 0.106, 0.121) | (0.286, 0.078, 0.079) |

EKOVEST | (0.626, 0.659, 0.645) | (0.383, 0.388, 0.388) |

GADANG | (0.327, 0.346, 0.378) | (0.208, 0.215, 0.236) |

GAMUDA | (0.599, 0.573, 0.558) | (0.379, 0.388, 0.388) |

GBGAQRS | (0.540, 0.574, 0.591) | (0.380, 0.374, 0.364) |

GKENT | (0.596, 0.668, 0.683) | (0.377, 0.388, 0.388) |

HOHUP | (0.703, 0.677, 0.643) | (0.371, 0.387, 0.388) |

HSL | (0.511, 0.585, 0.608) | (0.368, 0.387, 0.387) |

IJM | (0.612, 0.635, 0.641) | (0.376, 0.387, 0.388) |

KERJAYA | (0.416, 0.449, 0.467) | (0.306, 0.324, 0.325) |

KIMLUN | (0.072, 0.436, 0.500) | (0.041, 0.312, 0.351) |

MELATI | (0.545, 0.523, 0.512) | (0.385, 0.375, 0.375) |

MITRA | (0.540, 0.512, 0.531) | (0.388, 0.347, 0.341) |

MUHIBAH | (0.945, 0.907, 0.856) | (0.380, 0.388, 0.388) |

PRTASCO | (0.531, 0.524, 0.540) | (0.338, 0.383, 0.386) |

PTARAS | (0.482, 0.465, 0.446) | (0.317, 0.379, 0.384) |

WCT | (0.663, 0.700, 0.696) | (0.369, 0.382, 0.379) |

${S}^{*}$ | (0.07189, 0.10573, 0.12119) |

${S}^{-}$ | (0.94510, 0.90708, 0.85570) |

${R}^{*}$ | (0.03930, 0.07757, 0.07856) |

${R}^{-}$ | (0.38831, 0.38831, 0.38831) |

Companies | Entropy-Fuzzy VIKOR Scores (Q_{i}) | Optimal Ranking |
---|---|---|

BREM | 0.774 | 11 |

CRESBLD | 0.828 | 15 |

DKLS | 0.506 | 4 |

ECONBHD | 0.090 | 1 |

EKOVEST | 0.841 | 16 |

GADANG | 0.384 | 2 |

GAMUDA | 0.791 | 13 |

GBGAQRS | 0.768 | 10 |

GKENT | 0.845 | 17 |

HOHUP | 0.851 | 18 |

HSL | 0.789 | 12 |

IJM | 0.826 | 14 |

KERJAYA | 0.609 | 5 |

KIMLUN | 0.505 | 3 |

MELATI | 0.744 | 8 |

MITRA | 0.704 | 7 |

MUHIBAH | 0.998 | 20 |

PRTASCO | 0.747 | 9 |

PTARAS | 0.697 | 6 |

WCT | 0.855 | 19 |

**Table 8.**The comparison of the scores (Q

_{i}) and optimal ranking of construction companies between the VIKOR model and entropy–fuzzy VIKOR model.

Entropy-Fuzzy VIKOR Model | VIKOR Model | |||
---|---|---|---|---|

Companies | Scores (Q_{i}) | Optimal Ranking | Scores (Q_{i}) | Optimal Ranking |

BREM | 0.774 | 11 | 0.770 | 12 |

CRESBLD | 0.828 | 15 | 0.888 | 18 |

DKLS | 0.506 | 4 | 0.194 | 1 |

ECONBHD | 0.090 | 1 | 0.437 | 5 |

EKOVEST | 0.841 | 16 | 0.833 | 15 |

GADANG | 0.384 | 2 | 0.345 | 4 |

GAMUDA | 0.791 | 13 | 0.676 | 8 |

GBGAQRS | 0.768 | 10 | 0.808 | 14 |

GKENT | 0.845 | 17 | 0.693 | 10 |

HOHUP | 0.851 | 18 | 0.870 | 17 |

HSL | 0.789 | 12 | 0.780 | 13 |

IJM | 0.826 | 14 | 0.866 | 16 |

KERJAYA | 0.609 | 5 | 0.248 | 3 |

KIMLUN | 0.505 | 3 | 0.202 | 2 |

MELATI | 0.744 | 8 | 0.684 | 9 |

MITRA | 0.704 | 7 | 0.573 | 7 |

MUHIBAH | 0.998 | 20 | 0.968 | 19 |

PRTASCO | 0.747 | 9 | 0.697 | 11 |

PTARAS | 0.697 | 6 | 0.521 | 6 |

WCT | 0.855 | 19 | 1.000 | 20 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lam, W.S.; Lam, W.H.; Jaaman, S.H.; Liew, K.F.
Performance Evaluation of Construction Companies Using Integrated Entropy–Fuzzy VIKOR Model. *Entropy* **2021**, *23*, 320.
https://doi.org/10.3390/e23030320

**AMA Style**

Lam WS, Lam WH, Jaaman SH, Liew KF.
Performance Evaluation of Construction Companies Using Integrated Entropy–Fuzzy VIKOR Model. *Entropy*. 2021; 23(3):320.
https://doi.org/10.3390/e23030320

**Chicago/Turabian Style**

Lam, Weng Siew, Weng Hoe Lam, Saiful Hafizah Jaaman, and Kah Fai Liew.
2021. "Performance Evaluation of Construction Companies Using Integrated Entropy–Fuzzy VIKOR Model" *Entropy* 23, no. 3: 320.
https://doi.org/10.3390/e23030320