The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle
Abstract
1. Introduction
2. Framework
2.1. Notation and Units
2.2. Governing Equations
2.3. Frictionless Cycles
3. Analytical Results
3.1. Maximum Work
3.2. Maximum Power
3.3. Harmonic Refrigerator
3.4. Spin System
4. Numerical Results
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kosloff, R.; Rezek, Y. The Quantum Harmonic Otto Cycle. Entropy 2017, 19, 136. [Google Scholar] [CrossRef]
- Peterson, J.P.; Batalhão, T.B.; Herrera, M.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Serra, R.M. Experimental Characterization of a Spin Quantum Heat Engine. Phys. Rev. Lett. 2019, 123, 240601. [Google Scholar] [CrossRef] [PubMed]
- Abah, O.; Lutz, E. Optimal performance of a quantum Otto refrigerator. EPL 2016, 113, 60002. [Google Scholar] [CrossRef]
- Solfanelli, A.; Falsetti, M.; Campisi, M. Nonadiabatic single-qubit quantum Otto engine. Phys. Rev. B 2020, 101, 054513. [Google Scholar] [CrossRef]
- Chen, L.; Liu, X.; Ge, Y.; Wu, F.; Feng, H.; Xia, S. Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators. Phys. A Stat. Mech. Appl. 2020, 550, 124140. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Quantum signatures in the quantum Carnot cycle. New J. Phys. 2020, 22, 013055. [Google Scholar] [CrossRef]
- Curzon, F.; Ahlborn, B. Efficiency of a carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Rezek, Y.; Kosloff, R. Irreversible performance of a quantum harmonic heat engine. New J. Phys. 2006, 8, 83. [Google Scholar] [CrossRef]
- Deffner, S. Efficiency of harmonic quantum Otto engines at maximal power. Entropy 2018, 20, 875. [Google Scholar] [CrossRef]
- Abah, O.; Paternostro, M.; Lutz, E. Shortcut-to-adiabaticity quantum Otto refrigerator. Phys. Rev. Res. 2020, 2, 023120. [Google Scholar] [CrossRef]
- Berry, M.V. Transitionless quantum driving. J. Phys. A Math. Theor. 2009, 42, 365303. [Google Scholar] [CrossRef]
- Rezek, Y.; Salamon, P.; Hoffmann, K.H.; Kosloff, R. The quantum refrigerator: The quest for absolute zero. EPL 2009, 85, 30008. [Google Scholar] [CrossRef]
- Deng, S.; Chenu, A.; Diao, P.; Li, F.; Yu, S.; Coulamy, I.; Del Campo, A.; Wu, H. Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 2018, 4, eaar5909. [Google Scholar] [CrossRef]
- Salamon, P.; Hoffmann, K.H.; Rezek, Y.; Kosloff, R. Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 2009, 11, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Abah, O.; Lutz, E. Energy efficient quantum machines. EPL (Europhys. Lett.) 2017, 118, 40005. [Google Scholar] [CrossRef]
- Abah, O.; Lutz, E. Performance of shortcut-to-adiabaticity quantum engines. Phys. Rev. E 2018, 98, 032121. [Google Scholar] [CrossRef]
- del Campo, A.; Goold, J.; Paternostro, M. More bang for your buck: Super-adiabatic quantum engines. Sci. Rep. 2014, 4, 6208. [Google Scholar] [CrossRef]
- Beau, M.; Jaramillo, J.; del Campo, A. Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity. Entropy 2016, 18, 168. [Google Scholar] [CrossRef]
- Insinga, A.; Andresen, B.; Salamon, P. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators. Phys. Rev. E 2016, 94, 012119. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Vol. 9780199213900; Oxford University Press: Oxford, UK, 2007; pp. 1–656. [Google Scholar] [CrossRef]
- Geva, E.; Kosloff, R. On the Classical Limit of Quantum Thermodynamics in Finite-Time. J. Chem. Phys. 1992, 97, 4398–4412. [Google Scholar] [CrossRef]
- Insinga, A.; Andresen, B.; Salamon, P.; Kosloff, R. Quantum heat engines: Limit cycles and exceptional points. Phys. Rev. E 2018, 97, 062153. [Google Scholar] [CrossRef] [PubMed]
- Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.; Ruschhaupt, A.; Chen, X.; Muga, J.G. Shortcuts to Adiabaticity. Adv. Atomic Mol. Opt. Phys. 2013, 62, 117–169. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.h.; Liu, Z.; Hänggi, P.; Gong, J. Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems. Phys. Rev. E 2013, 88, 062122. [Google Scholar] [CrossRef] [PubMed]
- Demirplak, M.; Rice, S.A. Adiabatic population transfer with control fields. J. Phys. Chem. A 2003, 107, 9937–9945. [Google Scholar] [CrossRef]
- Muga, J.G.; Chen, X.; Ibáñez, S.; Lizuain, I.; Ruschhaupt, A. Transitionless quantum drivings for the harmonic oscillator. J. Phys. B Atomic Mol. Opt. Phys. 2010, 43, 085509. [Google Scholar] [CrossRef]
- Kosloff, R.; Feldmann, T. Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2002, 65, 055102. [Google Scholar] [CrossRef]
- Feldmann, T.; Kosloff, R. Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2003, 68, 016101. [Google Scholar] [CrossRef]
- Feldmann, T.; Kosloff, R. Quantum lubrication: Suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 73, 025107. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Insinga, A.R. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle. Entropy 2020, 22, 1060. https://doi.org/10.3390/e22091060
Insinga AR. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle. Entropy. 2020; 22(9):1060. https://doi.org/10.3390/e22091060
Chicago/Turabian StyleInsinga, Andrea R. 2020. "The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle" Entropy 22, no. 9: 1060. https://doi.org/10.3390/e22091060
APA StyleInsinga, A. R. (2020). The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle. Entropy, 22(9), 1060. https://doi.org/10.3390/e22091060