Conditional Lie-Bäcklund Symmetries and Differential Constraints of Radially Symmetric Nonlinear Convection-Diffusion Equations with Source
Abstract
1. Introduction
2. General Statement
3. CLBSs (1) of Equation (2)
4. Exact Solutions of Equation (2)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CLBS | conditional Lie-Bäcklund symmetry |
PDE | partial differential equation |
ODEs | ordinary differential equations |
DC | differential constraint |
References
- Fokas, A.S.; Liu, Q.M. Nonlinear interaction of traveling waves of nonintegrable equations. Phys. Rev. Lett. 1994, 72, 3293–3296. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, R.Z. Conditional Lie-Bäcklund symmetry and reductions of equations. J. Phys. A Math. Gen. 1995, 28, 3841–3850. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; D. Reidel: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman and Hall/CRC: New York, NY, USA, 2018. [Google Scholar]
- Liu, Q.M.; Fokas, A.S. Exact interaction of solitary waves for certain non-integrable equations. J. Math. Phys. 1996, 37, 324–345. [Google Scholar] [CrossRef]
- Liu, Q.M. Exact solutions to nonlinear equations with quadratic nonlinearity. J. Phys. A Math. Gen. 2001, 34, 5083–5088. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman and Hall: London, UK, 2007. [Google Scholar]
- Ji, L.N.; Qu, C.Z. Conditional Lie-Bäcklund symmetries and invariant subspaces to nonlinear diffusion equaitons with convection and source. Stud. Appl. Math. 2013, 131, 266–301. [Google Scholar]
- Qu, C.Z.; Estévez, P.G. On nonlinear diffusion equations with x-dependent convection and absorption. Nonl. Anal. TMA 2004, 37, 549–557. [Google Scholar] [CrossRef]
- Qu, C.Z.; Ji, L.N.; Wang, L.Z. Conditional Lie-Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations. Stud. Appl. Math. 2007, 119, 355–391. [Google Scholar] [CrossRef]
- Qu, C.Z.; Zhang S., L.; Liu, R.C. Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source. Physica D 2000, 144, 97–123. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu C., Z.; Shen, S.F. Conditional Lie-Bäcklund symmetry of evolution system and applications for reaction-diffusion system. Stud. Appl. Math. 2014, 133, 118–149. [Google Scholar] [CrossRef]
- Wang, J.P.; Ji, L.N. Conditional Lie-Bäcklund symmetry, secon-order differential constraints and direct reduction of diffusion systems. J. Math. Anal. Appl. 2015, 427, 1101–1118. [Google Scholar] [CrossRef]
- Olver, P. Direct reduction and differential constraints. Proc. R. Soc. Lond. A 1994, 444, 509–523. [Google Scholar]
- Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and Its Applications to Gas Dynamics; Nauka: Novosibirsk, Russia, 1984. [Google Scholar]
- Pascal, J.P.; Pascal, H. On some diffusive waves in non-linear heat conduction. Int. J. Nonlinear Mech. 1993, 28, 641–649. [Google Scholar] [CrossRef]
- Pascal, J.P.; Pascal, H. On some non-linear shear flows of non-Newtonian fluids. Int. J. Nonlinear Mech. 1995, 30, 487–500. [Google Scholar] [CrossRef]
- Dieza, J.A.; Gratton, R.; Gratton, J. Self-similar solution of the second kind for a convergent viscous grabity currrent. Phys. Fluids A 1992, 4, 1148–1155. [Google Scholar] [CrossRef]
- Grarilov, V.P.; Klepikova, N.V.; Rodean, H.C. Trial of nonlinear diffusion equation as a model of turbulent diffusion. Atmos. Environ. 1995, 29, 2317–2322. [Google Scholar]
- Vinokur, V.M.; Feigel’man, M.V.; Geshkenbein, V.B. Exact solution for flux creep with logarithmic U(j) dependence: Self-organized critical state in high-Tc superconductors. Phys. Rev. Lett. 1991, 67, 915–918. [Google Scholar] [CrossRef]
- Bokhari, A.H.; AI Deweik, A.Y.; Kara, A.H.; Zaman, F.D. A symmetry analysis of some classes of evolutionary nonlinear (2+1)-diffusion equations with variable diffusivity. Nonlinear Dyn. 2010, 62, 127–138. [Google Scholar] [CrossRef]
- Edwards, M.P.; Broadbridge, P. Exact transient solutions to nonlinear diffusion-convection equations in higher dimensions. J. Phys. A Math. Gen. 1994, 27, 5455–5465. [Google Scholar] [CrossRef]
- Cherniha, R.; Kovalenko, S. Lie symmetries and reductions of multi-dimensional boundary value problems of the Stefan type. J. Phys. A Math. 2011, 44, 485202. [Google Scholar] [CrossRef]
- Cherniha, R.; Serov, M.; Prystavks, Y. A complete Lie symmetry classification of a class of (1+2)-dimensional reaction-diffusion-convection equations. Commun. Nonlinear Sci. Numer. Simul. 2020. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R.; Kovalenko, S. Lie symmetry properties of nonlinear reaction-diffusion equations with gradient-dependent diffusivity. Commun. Nonl. Sci. Numer. Simul. 2016, 36, 98–108. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Lie and conditional symmetries of a class of nonlinear (1+2)-dimensional boundary value problems. Symmetry 2015, 7, 1410–1435. [Google Scholar] [CrossRef]
- Broadbridge, P.; Daly, E.; Goard, J.M. Exact solutions of the Richards equation with nonlinear pant-root extraction. Water Resour. Res. 2017, 53, 9679–9691. [Google Scholar] [CrossRef]
- Barenblatt, G.I. On self-similar motions of compressible fluid in a porous medium. Prikl. Math. Mekh. 1952, 16, C679–C698. (In Russian) [Google Scholar]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef]
- Pascal, J.P. Similarity solutions for axisymmetric plane radial power law fluid flows through a porous meidum. Comput. Math. Appl. 1992, 23, 25–41. [Google Scholar] [CrossRef][Green Version]
- Ji, L.N.; Feng, W. Second-order conditional Lie-Bäcklund symmetries and differential constraints of nonlinear reaction-diffuison equations with gradient-dependent diffusivity. Symmetry 2018, 10, 267. [Google Scholar] [CrossRef]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachev V., V.; Rodionov, A.A. Applications of Group-Theoretic Methods in Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Wang, R. Conditional Lie-Bäcklund Symmetries and Differential Constraints of Radially Symmetric Nonlinear Convection-Diffusion Equations with Source. Entropy 2020, 22, 873. https://doi.org/10.3390/e22080873
Ji L, Wang R. Conditional Lie-Bäcklund Symmetries and Differential Constraints of Radially Symmetric Nonlinear Convection-Diffusion Equations with Source. Entropy. 2020; 22(8):873. https://doi.org/10.3390/e22080873
Chicago/Turabian StyleJi, Lina, and Rui Wang. 2020. "Conditional Lie-Bäcklund Symmetries and Differential Constraints of Radially Symmetric Nonlinear Convection-Diffusion Equations with Source" Entropy 22, no. 8: 873. https://doi.org/10.3390/e22080873
APA StyleJi, L., & Wang, R. (2020). Conditional Lie-Bäcklund Symmetries and Differential Constraints of Radially Symmetric Nonlinear Convection-Diffusion Equations with Source. Entropy, 22(8), 873. https://doi.org/10.3390/e22080873