# Stability Analysis of the Explicit Difference Scheme for Richards Equation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Richards Equation and the Explicit Difference Scheme

- h-based$$C\left(h\right)\frac{\partial h}{\partial t}-\nabla \xb7K\left(h\right)\nabla h-\frac{\partial K}{\partial z}=0,$$
- $\theta $-based$$\frac{\partial \theta}{\partial t}-\nabla \xb7D\left(\theta \right)\nabla \theta -\frac{\partial K}{\partial z}=0,$$
- mixed$$\frac{\partial \theta}{\partial t}-\nabla \xb7K\left(h\right)\nabla h-\frac{\partial K}{\partial z}=0,$$

**Remark**

**1.**

## 3. Stability Analysis

**Theorem**

**1.**

**Proof.**

**Remark**

**2.**

**Remark**

**3.**

## 4. Numerical Experiments

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Broadbridge, P.; Daly, E.; Goard, J. Exact Solutions of the Richards Equation With Nonlinear Plant-Root Extraction. Water Resour. Res.
**2017**, 53, 9679–9691. [Google Scholar] [CrossRef] - Broadbridge, P.; Edwards, M.; Kearton, J. Closed-form solutions for unsaturated flow under variable flux boundary conditions. Adv. Water Res.
**1996**, 19, 207–213. [Google Scholar] [CrossRef] - Broadbridge, P.; Triadis, D.; Hill, J.M. Infiltration from supply at constant water content: An integrable model. J. Eng. Math.
**2009**, 64, 193–206. [Google Scholar] [CrossRef] - Kumar, C. A numerical simulation model for one-dimensional infiltration. ISH J. Hyddraul. Eng.
**1998**, 4, 5–15. [Google Scholar] [CrossRef] - Lopez, F.; Vacca, G. Spectral properties and conservation laws in mimetic finite difference methods for PDEs. J. Comput. Appl. Math.
**2016**, 292, 760–784. [Google Scholar] [CrossRef] - Kavetski, D.; Binning, P.; Sloan, S.W. Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation. Adv. Water Res.
**2001**, 24, 595–605. [Google Scholar] [CrossRef] - Williams, G.A.; Miller, C.T. An evaluation of temporally adaptive transformation approaches for solving Richards equation. Adv. Water Res.
**1999**, 22, 831–840. [Google Scholar] [CrossRef] - Radu, F.; Pop, I.S.; Knabner, P. Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards equation. SIAM J. Numer. Anal.
**2004**, 42, 1452–1478. [Google Scholar] [CrossRef] - Both, J.W.; Kumar, K.; Nordbotten, J.M.; Pop, I.S.; Radu, F.A. Iterative Linearisation Schemes for Doubly Degenerate Parabolic Equations. In Numerical Mathematics and Advanced Applications; Springer: Cham, Switzerland, 2017; Volume 126. [Google Scholar]
- Kuraz, M.; Mayer, P.; Pech, P. Solving the nonlinear Richards equation model with adaptive domain decomposition. J. Comput. Appl. Math.
**2014**, 270, 2–11. [Google Scholar] [CrossRef] - List, F.; Radu, F.A. A study on iterative methods for solving Richards’ equation. Comput. Geosci.
**2016**, 20, 341–353. [Google Scholar] [CrossRef] [Green Version] - Zhu, J.; Chen, L.-Q.; Shen, J.; Tikare, V. Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method. Phys. Rev. E
**1999**, 60, 3564–3572. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Xu, C.; Tang, T. Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal.
**2006**, 44, 1759–1779. [Google Scholar] [CrossRef] - Haverkamp, R.; Vauclin, M. A note on estimating finite difference interblock hydraulic conductivity values for transient unsaturated flow problems. Water Resour. Res.
**1979**, 15, 181–187. [Google Scholar] [CrossRef] - Pop, I.S.; Radu, F.; Knabner, P. Mixed finite elements for the Richards’ equation: Linearization procedure. J. Comput. Appl. Math.
**2004**, 168, 365–373. [Google Scholar] [CrossRef] [Green Version] - Celia, M.A.; Bouloutas, E.T. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res.
**1990**, 26, 1483–1496. [Google Scholar] [CrossRef] - Liu, F.; Fukumoto, Y.; Zhao, X. A linearized finite difference scheme for the Richards equation under variable-flux boundary conditions. J. Sci. Comput.
**2020**, in press. [Google Scholar] [CrossRef] - Shang, Y. Fixed-time group consensus for multi-agent systems with non-linear dynamics and uncertainties. IET control Theory Appl.
**2018**, 12, 395–404. [Google Scholar] [CrossRef]

$\mathit{\tau}$ | $\mathit{\tau}=0.4$ | $\mathit{\tau}=0.2$ | $\mathit{\tau}=0.1$ | $\mathit{\tau}=0.05$ | $\mathit{\tau}=0.025$ | $\mathit{\tau}=0.0125$ | ||
---|---|---|---|---|---|---|---|---|

Accuracy | ||||||||

${\mathit{\u03f5}}_{2}$ | ||||||||

${\u03f5}_{2}=0$ | Unstable | Unstable | Unstable | Unstable | $5.60\times {10}^{-4}$ | $3.26\times {10}^{-5}$ | ||

${\u03f5}_{2}=0.0001$ | Unstable | Unstable | Unstable | Unstable | $1.38\times {10}^{-4}$ | $3.75\times {10}^{-5}$ | ||

${\u03f5}_{2}=0.0005$ | Unstable | $1.88\times {10}^{-1}$ | $5.47\times {10}^{-2}$ | $5.00\times {10}^{-3}$ | $3.78\times {10}^{-4}$ | $1.90\times {10}^{-4}$ | ||

${\u03f5}_{2}=0.001$ | $9.10\times {10}^{-2}$ | $1.44\times {10}^{-2}$ | $4.00\times {10}^{-3}$ | $1.50\times {10}^{-3}$ | $7.54\times {10}^{-4}$ | $3.79\times {10}^{-4}$ |

N | 1000 | 2000 | 4000 | 8000 | 16,000 |
---|---|---|---|---|---|

${|h-H|}_{\infty ,h}$ | $1.90\times {10}^{-3}$ | $9.65\times {10}^{-4}$ | $4.82\times {10}^{-4}$ | $2.41\times {10}^{-4}$ | $1.21\times {10}^{-4}$ |

Ratio | Non | 0.98 | 1.00 | 1.00 | 0.99 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, F.; Fukumoto, Y.; Zhao, X.
Stability Analysis of the Explicit Difference Scheme for Richards Equation. *Entropy* **2020**, *22*, 352.
https://doi.org/10.3390/e22030352

**AMA Style**

Liu F, Fukumoto Y, Zhao X.
Stability Analysis of the Explicit Difference Scheme for Richards Equation. *Entropy*. 2020; 22(3):352.
https://doi.org/10.3390/e22030352

**Chicago/Turabian Style**

Liu, Fengnan, Yasuhide Fukumoto, and Xiaopeng Zhao.
2020. "Stability Analysis of the Explicit Difference Scheme for Richards Equation" *Entropy* 22, no. 3: 352.
https://doi.org/10.3390/e22030352