Entropy-Based GLDS Method for Social Capital Selection of a PPP Project with q-Rung Orthopair Fuzzy Information
Abstract
:1. Introduction
- (1)
- The q-ROFS can extend the application scope of the assessment information, and the q-rung orthopair fuzzy Hamacher weighting average (q-ROFHWA) and q-rung orthopair fuzzy Hamacher weighting geometric (q-ROFHWG) operators, which can consider the interrelationship between q-ROFSs, were proposed based on the Hamacher operations.
- (2)
- The previous works assumed that the attribute weights were known, but this is impossible in a complicated decision-making environment. This study defined the q-ROFE, which considers the similarity part and hesitancy part, and as such, is a useful tool for determining the attribute weights.
- (3)
- The previous works ranked all alternatives by the score results but failed to reflect the dominance flow of the alternatives over the attributes; in this study, we proposed the q-rung orthopair fuzzy entropy-based GLDS method for MAGDM issues, which can overcome this limitation.
2. Preliminaries
3. The q-Rung Orthopair Fuzzy Hamacher Aggregation Operator
4. Determining the Attribute Weight Based on the q-ROFE
- (1)
- ;
- (2)
- if is a crisp set;
- (3)
- if , ;
- (4)
- , if is less fuzzy than , i.e., and for for , or and for for ;
- (5)
- .
- (1)
- For and , we can derive , thus is proved.
- (2)
- If is a crisp set, which indicates or , then ; if , we can derive ; for and , then and ; for and , we can get or , which means is a crisp set.
- (3)
- If , then . If , we can obtain , which indicates or , then we can obtain .
- (4)
- If is less fuzzy than , assuming that and for for , we can obtain:
- (5)
- For a q-rung orthopair fuzzy complement set , the entropy can be depicted as:
5. The Entropy-Based GLDS Method for MAGDM with q-ROFN Information
6. The MAGDM Steps Based on the q-rung Orthopair Fuzzy Entropy-Based GLDS Method
7. Numerical Example and Comparative Analysis
7.1. Numerical Example
7.2. Comparative Analysis
7.2.1. Comparison with the q-ROFWA and q-ROFWG Operators
7.2.2. Comparison with the q-Rung Orthopair Fuzzy Cosine Similarity Measures
7.2.3. Comparison with Other Existing Methods
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stojcic, M.; Zavadskas, E.K.; Pamucar, D.; Stevic, Z.; Mardani, A. Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018. Symmetry 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Wang, J.; Wei, G.W.; Wu, J.; Wei, C.; Wei, Y. CODAS method for multiple attribute group decision making under 2-tuple linguistic neutrosophic environment. Informatica 2020, 31, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Zhang, H.; Liu, P. Multi-Attribute Decision Making Based on Intuitionistic Fuzzy Power Maclaurin Symmetric Mean Operators in the Framework of Dempster-Shafer Theory. Symmetry 2019, 11, 807. [Google Scholar] [CrossRef] [Green Version]
- Çam, Ö.N.; Sezen, H.K. Linear programming formulation for vehicle routing problem which is minimized idle time. Decis. Mak. Appl. Manag. Eng. 2020, 3, 22–29. [Google Scholar] [CrossRef]
- Lei, F.; Wei, G.W.; Gao, H.; Wu, J.; Wei, C. TOPSIS Method for Developing Supplier Selection with Probabilistic Linguistic Information. Int. J. Fuzzy Syst. 2020, 22, 749–759. [Google Scholar] [CrossRef]
- Lu, J.P.; He, T.T.; Wei, G.W.; Wu, J.; Wei, C. Cumulative Prospect Theory: Performance Evaluation of Government Purchases of Home-Based Elderly-Care Services Using the Pythagorean 2-tuple Linguistic TODIM Method. Int. J. Environ. Res. Public Health 2020, 17, 1939. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Peng, X.D.; Yang, Y. Some Results for Pythagorean Fuzzy Sets. Int. J. Intell. Syst. 2015, 30, 1133–1160. [Google Scholar] [CrossRef]
- Reformat, M.Z.; Yager, R.R. Suggesting Recommendations Using Pythagorean Fuzzy Sets illustrated Using Netflix Movie Data. In Information Processing and Management of Uncertainty in Knowledge-Based Systems; Laurent, A., Strauss, O., BouchonMeunier, B., Yager, R.R., Eds.; IPMU: Montpellier, France, 2014; Volume 442, pp. 546–556. [Google Scholar]
- Maclaurin, C. A second letter to Martin Folkes, Esq.; concerning the roots of equations, with demonstration of other rules of algebra. Philos. Trans. Roy. Soc. Lond. Ser. A 1729, 36, 59–96. [Google Scholar]
- Yang, W.; Pang, Y.F. New Pythagorean Fuzzy Interaction Maclaurin Symmetric Mean Operators and Their Application in Multiple Attribute Decision Making. IEEE Access 2018, 6, 39241–39260. [Google Scholar] [CrossRef]
- Gou, X.J.; Xu, Z.S.; Ren, P.J. The Properties of Continuous Pythagorean Fuzzy Information. Int. J. Intell. Syst. 2016, 31, 401–424. [Google Scholar] [CrossRef]
- Yang, W.; Shi, J.; Liu, Y.; Pang, Y.; Lin, R. Pythagorean Fuzzy Interaction Partitioned Bonferroni Mean Operators and Their Application in Multiple-Attribute Decision-Making. Complexity 2018. [Google Scholar] [CrossRef]
- Liang, D.C.; Xu, Z.S.; Darko, A.P. Projection Model for Fusing the Information of Pythagorean Fuzzy Multicriteria Group Decision Making Based on Geometric Bonferroni Mean. Int. J. Intell. Syst. 2017, 32, 966–987. [Google Scholar] [CrossRef]
- Ren, P.J.; Xu, Z.S.; Gou, X.J. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Liang, D.C.; Zhang, Y.R.J.; Xu, Z.S.; Darko, A.P. Pythagorean fuzzy Bonferroni mean aggregation operator and its accelerative calculating algorithm with the multithreading. Int. J. Intell. Syst. 2018, 33, 615–633. [Google Scholar] [CrossRef]
- Peng, X.D.; Yuan, H.Y.; Yang, Y. Pythagorean Fuzzy Information Measures and Their Applications. Int. J. Intell. Syst. 2017, 32, 991–1029. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized Orthopair Fuzzy Sets. Ieee Trans. Fuzzy Syst. 2017, 25, 1222–1230. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, P. Some q-Rung Orthopair Fuzzy Aggregation Operators and their Applications to Multiple-Attribute Decision Making. Int. J. Intell. Syst. 2018, 33, 259–280. [Google Scholar] [CrossRef]
- Wei, G.W.; Wei, C.; Wang, J.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization. Int. J. Intell. Syst. 2019, 34, 50–81. [Google Scholar] [CrossRef]
- Bai, K.Y.; Zhu, X.M.; Wang, J.; Zhang, R.T. Some Partitioned Maclaurin Symmetric Mean Based on q-Rung Orthopair Fuzzy Information for Dealing with Multi-Attribute Group Decision Making. Symmetry 2018, 10, 383. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chen, S.M.; Wang, P. Multiple-Attribute Group Decision-Making Based on q-Rung Orthopair Fuzzy Power Maclaurin Symmetric Mean Operators. IEEE Trans. Syst. Man Cybern. Syst. 2018. [Google Scholar] [CrossRef]
- Liu, Z.M.; Liu, P.D.; Liang, X. Multiple attribute decision-making method for dealing with heterogeneous relationship among attributes and unknown attribute weight information under q-rung orthopair fuzzy environment. Int. J. Intell. Syst. 2018, 33, 1900–1928. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J. Some q-Rung Orthopai Fuzzy Bonferroni Mean Operators and Their Application to Multi-Attribute Group Decision Making. Int. J. Intell. Syst. 2018, 33, 315–347. [Google Scholar] [CrossRef]
- Liu, P.D.; Liu, W.Q. Multiple-attribute group decision-making based on power Bonferroni operators of linguistic q-rung orthopair fuzzy numbers. Int. J. Intell. Syst. 2019, 34, 652–689. [Google Scholar] [CrossRef]
- Yang, W.; Pang, Y.F. New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making. Int. J. Intell. Syst. 2019, 34, 439–476. [Google Scholar] [CrossRef]
- Wei, G.W.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1426–1458. [Google Scholar] [CrossRef]
- Liu, Z.M.; Wang, S.; Liu, P.D. Multiple attribute group decision making based on q-rung orthopair fuzzy Heronian mean operators. Int. J. Intell. Syst. 2018, 33, 2341–2363. [Google Scholar] [CrossRef]
- Wang, J.; Wei, G.W.; Wei, C.; Wei, Y. MABAC method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Def. Technol. 2020, 16, 208–216. [Google Scholar] [CrossRef]
- Wu, X.; Liao, H. A consensus-based probabilistic linguistic gained and lost dominance score method. Eur. J. Oper. Res. 2019, 272, 1017–1027. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, X.; Liao, H.; Herrera, F. Underground Mining Method Selection with the Hesitant Fuzzy Linguistic Gained and Lost Dominance Score Method. IEEE Access 2018, 6, 66442–66458. [Google Scholar] [CrossRef]
- Liao, H.C.; Yu, J.Y.; Wu, X.L.; Al-Barakati, A.; Altalhi, A.; Herrera, F. Life satisfaction evaluation in earthquake-hit area by the probabilistic linguistic GLDS method integrated with the logarithm-multiplicative analytic hierarchy process. Int. J. Disaster Risk Reduct. 2019, 38, 101190. [Google Scholar] [CrossRef]
- Hamachar, H. Uber logische verknunpfungenn unssharfer Aussagen und deren Zugenhorige Bewertungsfunktione Trappl, Klir, Riccardi (Eds.). Prog. Cybernatics Syst. Res. 1978, 3, 276–288. [Google Scholar]
- Liu, J.; Zhou, N.; Zhuang, L.H.; Li, N.; Jin, F.F. Interval-Valued Hesitant Fuzzy Multiattribute Group Decision Making Based on Improved Hamacher Aggregation Operators and Continuous Entropy. Math. Probl. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.M. Several New Interval-Valued Intuitionistic Fuzzy Hamacher Hybrid Operators and Their Application to Multi-Criteria Group Decision Making. Int. J. Fuzzy Syst. 2016, 18, 829–848. [Google Scholar] [CrossRef]
- Tan, C.Q.; Yi, W.T.; Chen, X.H. Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making. Appl. Soft Comput. 2015, 26, 325–349. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, Y.L. Hesitant Fuzzy Linguistic Aggregation Operators Based on the Hamacher t-norm and t-conorm. Symmetry 2018, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.F.; Zhang, Z.M.; Kong, H. Some Normal Intuitionistic Fuzzy Heronian Mean Operators Using Hamacher Operation and Their Application. Symmetry 2018, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Wu, P.; Zhou, L.G.; Chen, H.Y.; Guan, X.J. Some new Hamacher aggregation operators under single-valued neutrosophic 2-tuple linguistic environment and their applications to multi-attribute group decision making. Comput. Ind. Eng. 2018, 116, 144–162. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.Z.; Zhao, G.Y.; Luo, S.Z. Linguistic neutrosophic Hamacher aggregation operators and the application in evaluating land reclamation schemes for mines. PLoS ONE 2018, 13, e0206178. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.S.; Hu, H. Entropy-based procedures for intuitionistic fuzzy multiple attribute decision making. J. Syst. Eng. Electron. 2009, 20, 1001–1011. [Google Scholar]
- Chen, Q.; Xu, Z.S.; Liu, S.S.; Yu, X.H. A Method Based on Interval-Valued Intuitionistic Fuzzy Entropy for Multiple Attribute Decision Making. Inf. Int. Interdiscip. J. 2010, 13, 67–77. [Google Scholar]
- Ye, J. Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and its optimal decision-making method based on the weights of alternatives. Expert Syst. Appl. 2011, 38, 6179–6183. [Google Scholar] [CrossRef]
- Xu, Z.S.; Xia, M.M. Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. Int. J. Intell. Syst. 2012, 27, 799–822. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 2016, 17, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Cross-Entropy of Dual Hesitant Fuzzy Sets for Multiple Attribute Decision-Making. Int. J. Decis. Support Syst. Technol. 2016, 8, 20–30. [Google Scholar] [CrossRef]
- Lu, J.P.; Wei, C.; Wu, J.; Wei, G.W. TOPSIS Method for Probabilistic Linguistic MAGDM with Entropy Weight and Its Application to Supplier Selection of New Agricultural Machinery Products. Entropy 2019, 21, 953. [Google Scholar] [CrossRef] [Green Version]
- Gou, X.J.; Xu, Z.S.; Liao, H.C. Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making. Inf. Sci. 2017, 388, 225–246. [Google Scholar] [CrossRef]
- Hu, J.H.; Yang, Y.; Zhang, X.L.; Chen, X.H. Similarity and entropy measures for hesitant fuzzy sets. Int. Trans. Oper. Res. 2018, 25, 857–886. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.T.; Xu, Z.S.; Zhang, X.L.; Tian, X.L. Pythagorean Fuzzy LINMAP Method Based on the Entropy Theory for Railway Project Investment Decision Making. Int. J. Intell. Syst. 2018, 33, 93–125. [Google Scholar] [CrossRef]
- Yang, M.S.; Hussain, Z. Fuzzy Entropy for Pythagorean Fuzzy Sets with Application to Multicriterion Decision Making. Complexity 2018. [Google Scholar] [CrossRef]
- He, T.T.; Wei, G.W.; Lu, J.P.; Wei, C.; Lin, R. Pythagorean 2-tuple linguistic Taxonomy method for supplier selection in medical instrument industries. Int. J. Environ. Res. Public Health 2019, 16, 4875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, G.W.; Wei, C.; Wu, J.; Wang, H.J. Supplier selection of medical consumption products with a probabilistic linguistic MABAC method. Int. J. Environ. Res. Public Health 2019, 16, 5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Ran, L.G.; Wei, G.W.; Wei, C.; Wu, J. VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products. Int. J. Environ. Res. Public Health 2020, 17, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.P.; Wei, G.W.; Wu, J.; Wei, C. Some Interval-Valued Intuitionistic Fuzzy Dombi Heronian Mean Operators and their Application for Evaluating the Ecological Value of Forest Ecological Tourism Demonstration Areas. Int. J. Environ. Res. Public Health 2020, 17, 829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.P.; Wei, C. TODIM method for performance appraisal on social-integration-based rural reconstruction with interval-valued intuitionistic fuzzy information. J. Intell. Fuzzy Syst. 2019, 37, 1731–1740. [Google Scholar] [CrossRef]
- Wang, R. Research on the Application of the Financial Investment Risk Appraisal Models with Some Interval Number Muirhead Mean Operators. J. Intell. Fuzzy Syst. 2019, 37, 1741–1752. [Google Scholar] [CrossRef]
- Wu, L.P.; Gao, H.; Wei, C. VIKOR method for financing risk assessment of rural tourism projects under interval-valued intuitionistic fuzzy environment. J. Intell. Fuzzy Syst. 2019, 37, 2001–2008. [Google Scholar] [CrossRef]
- Wu, L.P.; Wang, J.; Gao, H. Models for competiveness evaluation of tourist destination with some interval-valued intuitionistic fuzzy Hamy mean operators. J. Intell. Fuzzy Syst. 2019, 36, 5693–5709. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Wei, G.; Wei, C. Similarity Measures of q-Rung Orthopair Fuzzy Sets Based on Cosine Function and Their Applications. Mathematics 2019, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Shang, X.; Wang, J.; Wu, W.; Huang, H. Some q-Rung Dual Hesitant Fuzzy Heronian Mean Operators with Their Application to Multiple Attribute Group Decision-Making. Symmetry 2018, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, H.; Wei, G.W.; Wei, Y. Methods for Multiple-Attribute Group Decision Making with q-Rung Interval-Valued Orthopair Fuzzy Information and Their Applications to the Selection of Green Suppliers. Symmetry 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.M.; Gao, H. TODIM method for multiple attribute decision making with 2-tuple linguistic Pythagorean fuzzy information. J. Intell. Fuzzy Syst. 2019, 37, 769–1780. [Google Scholar] [CrossRef]
- Gao, H.; Lu, M.; Wei, Y. Dual hesitant bipolar fuzzy hamacher aggregation operators and their applications to multiple attribute decision making. J. Intell. Fuzzy Syst. 2019, 37, 5755–5766. [Google Scholar] [CrossRef]
- Li, Z.X.; Lu, M. Some novel similarity and distance and measures of Pythagorean fuzzy sets and their applications. J. Intell. Fuzzy Syst. 2019, 37, 1781–1799. [Google Scholar] [CrossRef]
- Zhang, X.F.; Gou, X.J.; Xu, Z.S.; Liao, H.C. A projection method for multiple attribute group decision making with probabilistic linguistic term sets. Int. J. Mach. Learn. Cybern. 2019, 10, 2515–2528. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, L.Q.; Liao, H.C.; Wang, S.Y.; Lev, B.; Fujita, H. A prospect theory-based group decision approach considering consensus for portfolio selection with hesitant fuzzy information. Knowl. Based Syst. 2019, 168, 28–38. [Google Scholar] [CrossRef]
- Li, Z.X.; Wei, G.W.; Wang, R.; Wu, J.; Wei, C.; Wei, Y. EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Technol. Econ. Dev. Econ. 2020, 26, 86–102. [Google Scholar] [CrossRef]
Authors | Production | Consider the Interrelationship | Consider the Parameter Vector | Consider the Dominance Flow | Consider the Unknown Weights |
---|---|---|---|---|---|
Liu and Wang [21] | q-ROFWA operator | No | No | No | No |
Liu and Wang [21] | q-ROFWG operator | No | No | No | No |
Wei et al. [22] | q-ROFMSM operators | Yes | Yes | No | No |
Bai et al. [23] | q-ROF-partitioned-MSM operators | Yes | Yes | No | No |
Liu et al. [24] | q-ROF-power-MSM operators | Yes | Yes | No | No |
Liu et al. [25] | q-ROFEBM operators | Yes | Yes | No | No |
Liu and Liu [26] | q-ROFBM operators | Yes | Yes | No | No |
Liu and Liu [27] | Lq-ROF-power-BM operators | Yes | Yes | No | No |
Yang and Pang [28] | q-ROF-partitioned-BM operators | Yes | Yes | No | No |
Wei et al. [29] | q-R2TLOFHM operators | Yes | Yes | No | No |
Liu et al. [30] | q-ROFHM operators | Yes | Yes | No | No |
Xu et al. [63] | q-RDHOFHM operators | Yes | Yes | No | No |
Proposed model | Entropy-based GLDS method | Yes | Yes | Yes | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wu, J.; Wei, G.; Wei, C.; Wang, J.; Wei, Y. Entropy-Based GLDS Method for Social Capital Selection of a PPP Project with q-Rung Orthopair Fuzzy Information. Entropy 2020, 22, 414. https://doi.org/10.3390/e22040414
Liu L, Wu J, Wei G, Wei C, Wang J, Wei Y. Entropy-Based GLDS Method for Social Capital Selection of a PPP Project with q-Rung Orthopair Fuzzy Information. Entropy. 2020; 22(4):414. https://doi.org/10.3390/e22040414
Chicago/Turabian StyleLiu, Li, Jiang Wu, Guiwu Wei, Cun Wei, Jie Wang, and Yu Wei. 2020. "Entropy-Based GLDS Method for Social Capital Selection of a PPP Project with q-Rung Orthopair Fuzzy Information" Entropy 22, no. 4: 414. https://doi.org/10.3390/e22040414
APA StyleLiu, L., Wu, J., Wei, G., Wei, C., Wang, J., & Wei, Y. (2020). Entropy-Based GLDS Method for Social Capital Selection of a PPP Project with q-Rung Orthopair Fuzzy Information. Entropy, 22(4), 414. https://doi.org/10.3390/e22040414