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Abstract: The social capital selection of a public–private-partnership (PPP) project could be regarded
as a classical multiple attribute group decision-making (MAGDM) issue. In this paper, based
on the traditional gained and lost dominance score (GLDS) method, the q-rung orthopair fuzzy
entropy-based GLDS method was used to solve MAGDM problems. First, some basic theories
related to the q-rung orthopair fuzzy sets (q-ROFSs) are briefly reviewed. Then, to fuse the q-rung
orthopair fuzzy information effectively, the q-rung orthopair fuzzy Hamacher weighting average
(q-ROFHWA) operator and q-rung orthopair fuzzy Hamacher weighting geometric (q-ROFHWG)
operator based on the Hamacher operation laws are proposed. Moreover, to determine the attribute
weights, the q-rung orthopair fuzzy entropy (q-ROFE) is proposed and some significant merits of it
are discussed. Next, based on the q-ROFHWA operator, q-ROFE, and the traditional GLDS method,
a MAGDM model with q-rung orthopair fuzzy information is built. In the end, a numerical example
for social capital selection of PPP projects is provided to testify the proposed method and deliver a
comparative analysis.

Keywords: multiple attribute group decision-making (MAGDM); GLDS model; entropy; social
capital selection; public–private-partnership (PPP) projects

1. Introduction

In actual decision-making applications, how to choose the most desirable alternative from a
given alternative set is very important [1–3]. The most useful method involves fusing the assessing
information expressed by experts and ranking all alternatives according to the fused results to select
the best alternative(s) [4–6]. Thus, how to obtain reasonable evaluation information is a valuable
topic. To do this, motivated by intuitionistic fuzzy sets (IFSs) [7], Pythagorean fuzzy sets (PFSs) [8]
appear to depict the complexity of the evaluation objects. Zhang and Xu [9] defined the Pythagorean
fuzzy technique for order preference by similarity to an ideal solution (TOPSIS) to manage multiple
attribute decision-making (MADM) issues. Peng and Yang [10] primarily proposed the division and
subtraction operations for PFSs. Reformat and Yager [11] solved a collaborative recommender system
with PFSs. By connecting the Maclaurin symmetric mean (MSM) [12] operators with PFSs, Yang
and Pang [13] defined some novel Pythagorean fuzzy interaction MSM operators. Gou et al. [14]
found some important properties of continuous PFSs. Yang et al. [15] designed partitioned Bonferroni
mean (PBM) operators for PFSs. Liang et al. [16] studied PFSs based on geometric averaging and
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BM operators. Ren et al. [17] designed the PF-TODIM model. Liang et al. [18] investigated some BM
operators for PFSs. Peng et al. [19] defined some new information measures for MADM problems for
PFSs. Furthermore, Yager [20] initially designed the q-rung orthopair fuzzy sets (q-ROFSs), which
consisted of the membership degree µ and non-membership degree v, which meets the requirement
µq + vq

≤ 1. Note that q-ROFS can be considered an extension of the IFSs and PFSs, since if q = 1,
the q-ROFSs reduce to IFSs, and if q = 2, the q-ROFSs reduce to PFSs. Liu and Wang [21] developed two
aggregation operators to fuse q-ROFSs. Wei et al. [22] defined some new MSM operators for q-ROFSs.
Bai et al. [23] built some partitioned MSM operators for q-ROFSs. Liu et al. [24] developed the power
MSM operators for q-ROFSs. Liu et al. [25] defined some extended BM operators for q-ROFSs. Liu and
Liu [26] designed some BM operators to fuse q-ROFSs. Liu and Liu [27] provided the concept of
linguistic q-ROFSs and introduced some power BM operators. Yang and Pang [28] defined partitioned
BM operators for q-ROFSs. Wei et al. [29] defined Heronian mean operators for q-ROFSs. Liu et al. [30]
also provided some Heronian mean operators to aggregate the q-ROFSs. Wang et al. [31] defined
the multi-attributive border approximation area comparison (MABAC) method for multiple attribute
group decision-making (MAGDM) using q-ROFSs.

However, the above-mentioned methods can only rank all alternatives using the score results and
failed to reflect the dominance flow of the alternatives over the attributes; on account of this, Wu and
Liao [32] proposed the gained and lost dominance score (GLDS) method to solve MADM problems.
This method is used to select the most desirable alternative(s) via calculating the dominance flow
between any two alternatives with respect to the attributes. The higher the gained dominance score is
and the lower the lost dominance score is, the best the alternative will be. Fu et al. [33] also studied the
GLDS method under a hesitant fuzzy linguistic setting. Liao et al. [34] proposed the life satisfaction
evaluation model in an earthquake-hit area using the PL-GLDS integrated method. According to the
above three works, we can see that the GLDS method is robust and effective for solving actual MADM
problems. Therefore, motivated by them, we extended the GLDS method to q-ROFSs and built a novel
q-rung orthopair fuzzy GLDS decision-making model in this study. In addition, the attribute weights
are often partly known or unknown; therefore, to manage this problem, the q-rung orthopair fuzzy
entropy (q-ROFE) was developed to determine the attribute weights. Thus, the main novelty and
contributions of this study are:

(1) The q-ROFS can extend the application scope of the assessment information, and the q-rung
orthopair fuzzy Hamacher weighting average (q-ROFHWA) and q-rung orthopair fuzzy Hamacher
weighting geometric (q-ROFHWG) operators, which can consider the interrelationship between
q-ROFSs, were proposed based on the Hamacher operations.

(2) The previous works assumed that the attribute weights were known, but this is impossible in a
complicated decision-making environment. This study defined the q-ROFE, which considers the
similarity part and hesitancy part, and as such, is a useful tool for determining the attribute weights.

(3) The previous works ranked all alternatives by the score results but failed to reflect the dominance
flow of the alternatives over the attributes; in this study, we proposed the q-rung orthopair fuzzy
entropy-based GLDS method for MAGDM issues, which can overcome this limitation.

The remainder of our article is structured as follows. Section 2 briefly reviews some fundamental
theories of q-ROFSs. Section 3 presents the q-rung orthopair fuzzy Hamacher weighting average
(q-ROFHWA) operator and the q-rung orthopair fuzzy Hamacher weighting geometric (q-ROFHWG)
operator. Section 4 proposes the q-ROFE to determine the attribute weights and discusses some
properties of the q-ROFE. Based on the traditional GLDS method, Section 5 builds the q-rung orthopair
fuzzy entropy-based GLDS method for MAGDM. Section 6 introduces the MAGDM steps based on
the q-rung orthopair fuzzy entropy-based GLDS model. Section 7 proposes the social capital selection
of public–private-partnership (PPP) projects with q-ROFSs and compares the developed method with
the existing methods. Section 8 concludes the paper with some meaningful remarks.
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2. Preliminaries

In this part, some basic theories related to q-ROFSs [20] are briefly depicted.

Definition 1. Assume that Ψ is a fixed set. Then, the q-ROFS is given as [20]:

Ψ =
{〈

x, (ξΨ(x), ζΨ(x))
〉
|x ∈ X

}
(1)

where ξΨ : X→ [0, 1] indicates the membership degree and ζΨ : X→ [0, 1] indicates the non-membership
degree of elements x ∈ X to Ψ, and the membership degree and non-membership degree satisfies:

(ξΨ(x))
q + (ζΨ(x))

q
≤ 1, q ≥ 1 (2)

On account of the ξΨ(x) and the ζΨ(x), the indeterminacy membership degree can be computed using the
following equation:

πΨ(x) =
q
√

1− (ξΨ(x))
q
− (ζΨ(x))

q (3)

Then, based on the above, we named Ψ = (ξ, ζ) as a q-rung orthopair fuzzy number (q-ROFN).

Definition 2. Given a q-ROFN Ψ = (ξ, ζ), the score function can be found using [21]:

SC(Ψ) =
1
2
(1 + ξq

− ζq), SC(Ψ) ∈ [0, 1] (4)

Definition 3. Given a q-ROFN Ψ = (ξ, ζ), the accuracy function can be found using [21]:

AC(Ψ) = ξq + ζq, AC(Ψ) ∈ [0, 1] (5)

According to the computation results of the score function SC and the accuracy function AC, the order
relation between any two q-ROFNs Ψi = (ξi, ζi)(i = 1, 2), can be derived using the following operation laws.

Definition 4. Given any two q-ROFNs Ψi = (ξi, ζi)(i = 1, 2), we can derive the score results of Ψ1 and
Ψ2 as being SC(Ψ1) = 1

2

(
1 + (ξ1)

q
− (ζ1)

q
)

and SC(Ψ2) = 1
2

(
1 + (ξ2)

q
− (ζ2)

q
)
, respectively, and the

accuracy results of Ψ1 and Ψ2 as AC(Ψ1) = (ξ1)
q + (ζ1)

q and AC(Ψ2) = (ξ2)
q + (ζ)q, respectively.

If SC(Ψ1) < SC(Ψ2), then Ψ1 < Ψ2. However, if SC(Ψ1) = SC(Ψ2), then either (1) if AC(Ψ1) = AC(Ψ2),
Ψ1 = Ψ2; or (2) if AC(Ψ1) < AC(Ψ2), Ψ1 < Ψ2 [21].

Definition 5. Given three q-ROFNs Ψ1 = (ξ1, ζ1), Ψ2 = (ξ2, ζ2), and Ψ = (ξ, ζ), some basic operations on
them are as follows [21]:

(1) Ψ1 ⊕Ψ2 =
(

q
√
(ξ1)

q + (ξ2)
q
− (ξ1)

q(ξ2)
q, ζ1ζ2

)
;

(2) Ψ1 ⊗Ψ2 =
(
ξ1ξ2, q

√
(ν1)

q + (ζ2)
q
− (ζ1)

q(ζ2)
q
)
;

(3) λΨ =

(
q
√

1− (1− ξq)λ, ζλ
)
,λ > 0;

(4) (Ψ)λ =

(
ξλ,

q
√

1− (1− ζq)λ
)
,λ > 0;

(5) Ψc = (ζ, ξ).
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3. The q-Rung Orthopair Fuzzy Hamacher Aggregation Operator

Hamacher operations [35] consist of Hamacher products and Hamacher sums. In the past few
years, numerous authors have studied the Hamacher operators [36–38]. Zhu and Li [39] developed
some novel Hamacher t-norm and t-conorm operators under a hesitant fuzzy linguistic environment.
Zhang et al. [40] defined some intuitionistic fuzzy operators based on traditional Heronian mean
(HM) operation laws and Hamacher operators. Based on single-valued neutrosophic 2-tuple linguistic
variables, Wu et al. [41] defined some Hamacher operators and applied them to MADM issues.
Liang et al. [42] defined the Hamacher operators under a linguistic neutrosophic setting and gave an
application of evaluating land reclamation schemes. Thus, we find that Hamacher operations are a
more useful and meaningful tool for aggregating fuzzy assessment information.

Then, according to the basic operation laws of q-ROFNs and the Hamacher operations, in the
following, some new q-rung orthopair fuzzy Hamacher operations are deifned.

Definition 6. Let γ > 0, and given three q-ROFNs Ψ1 = (ξ1, ζ1), Ψ2 = (ξ2, ζ2), and Ψ = (ξ, ζ), then the
q-rung orthopair fuzzy Hamacher operation laws could be depicted as:

Ψ1 ⊕Ψ2 =


q

√
(ξ1)

q+(ξ2)
q
−(ξ1)

q(ξ2)
q
−(1−γ)(ξ1)

q(ξ2)
q

1−(1−γ)(ξ1)
q(ξ2)

q ,
ζ1ζ2

q
√
γ+(1−γ)((ζ1)

q+(ζ2)
q
−(ζ1)

q(ζ2)
q)

, (6)

Ψ1 ⊗Ψ2 =


ξ1ξ2

q
√
γ+(1−γ)((ξ1)

q+(ξ2)
q
−(ξ1)

q(ξ2)
q)

,

q

√
(ζ1)

q+(ζ2)
q
−(ζ1)

q(ζ2)
q
−(1−γ)(ζ1)

q(ζ2)
q

1−(1−γ)(ζ1)
q(ζ2)

q

, (7)

λΨ

=

 q

√
(1+(γ−1)(ξ)q)

λ
−(1−(ξ)q)

λ

(1+(γ−1)(ξ)q)
λ
+(γ−1)(1−(ξ)q)

λ ,
q√γ(ζ)λ

q
√
(1+(γ−1)(1−(ζ)q))

λ
+(γ−1)(ζ)qλ

,
(8)

Ψλ

=

 q√γ(ξ)λ

q
√
(1+(γ−1)(1−(ξ)q))

λ
+(γ−1)(ξ)qλ

, q

√
(1+(γ−1)(ζ)q)

λ
−(1−(ζ)q)

λ

(1+(γ−1)(ζ)q)
λ
+(γ−1)(1−(ζ)q)

λ

.
(9)

Definition 7. Given a group of q-ROFNs Ψ j =
(
ξ j, ζ j

)
( j = 1, 2, . . . , n) with a weighting vector

ω j( j = 1, 2, . . . , n) that meets 0 ≤ ω j ≤ 1,
∑n

j=1 ω j = 1, then the q-rung orthopair fuzzy Hamacher weighted
averaging (q-ROFHWA) operator is defined as:

q-ROFHWA(Ψ1, Ψ2, . . . , Ψn) = ω1Ψ1 ⊕ω2Ψ2 . . .⊕ωnΨn =
n
⊕

j=1
ω jΨ j (10)

and the q-rung orthopair fuzzy Hamacher weighted geometric (q-ROFHWG) operator is defined as:

q-ROFHWG(Ψ1, Ψ2, . . . , Ψn) = (Ψ1)
ω1 ⊗ (Ψ2)

ω2 . . .⊗ (Ψn)
ωn =

n
⊗

j=1

(
Ψ j

)ω j (11)
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Theorem 1. Given a group of q-ROFNs Ψ j =
(
ξ j, ζ j

)
( j = 1, 2, . . . , n), then the fused results using the

q-ROFHWA and q-ROFHWG operators are also a q-ROFN where:

q-ROFHWA(Ψ1, Ψ2, . . . , Ψn) =
n
⊕

j=1
ω jΨ j

=



q

√√√√√√√ n∏
j=1

(
1+(γ−1)(ξ j)

q)wj
−

n∏
j=1

(
1−(ξ j)

q)wj

n∏
j=1

(
1+(γ−1)(ξ j)

q)wj+(γ−1)
n∏

j=1

(
1−(ξ j)

q)wj
,

q√γ
n∏

j=1
(ζ j)

wj

q

√
n∏

j=1

(
1+(γ−1)

(
1−(ζ j)

q))wj+(γ−1)
n∏

j=1
(ζ j)

qwj


(12)

q-ROFHWG(Ψ1, Ψ2, . . . , Ψn) =
n
⊗

j=1

(
Ψ j

)ω j

=



q√γ
n∏

j=1
(ξ j)

wj

q

√
n∏

j=1

(
1+(γ−1)

(
1−(ξ j)

q))wj+(γ−1)
n∏

j=1
(ξ j)

qwj
,

q

√√√√√√√ n∏
j=1

(
1+(γ−1)(ζ j)

q)wj
−

n∏
j=1

(
1−(ζ j)

q)wj

n∏
j=1

(
1+(γ−1)(ζ j)

q)wj+(γ−1)
n∏

j=1

(
1−(ζ j)

q)wj


(13)

4. Determining the Attribute Weight Based on the q-ROFE

The fuzzy entropy is an important measure for depicting fuzziness and uncertain information,
which has drawn numerous scholars’ attention in the past few years. Xu and Hu [43] defined the
intuitionistic fuzzy entropy to determine an attribute’s weights and studied the entropy application
for MADM. Chen et al. [44] proposed the interval-valued intuitionistic fuzzy entropy and applied
it to actual firepower disposition issues. Ye [45] developed the interval-valued intuitionistic fuzzy
cross-entropy for MADM. Xu and Xia [46] studied fuzzy entropy and cross-entropy under a hesitant
fuzzy setting and applied it to MADM based on the TOPSIS method. Wei [47] presented picture
fuzzy cross-entropy. Ye [48] proposed dual hesitant cross-entropy to manage actual MADM issues.
Lu et al. [49] defined a TOPSIS method for PL-MAGDM with entropy weights. Gou et al. [50]
defined some novel entropy and cross-entropy for hesitant fuzzy linguistic variables. Hu et al. [51]
developed several similarity and entropy measures for hesitant fuzzy sets. To denote the entropy
of the Pythagorean fuzzy set (PFS), Xue et al. [52] first developed the Pythagorean fuzzy entropy
and the interval-valued Pythagorean fuzzy entropy based on the similarity measure and hesitance
measure; then, a Pythagorean fuzzy entropy-based LINMAP method was proposed for a railway
project investment problem. Yang and Hussain [53] also defined several Pythagorean fuzzy entropy
for MADM. Thus, motivated by intuitionistic entropy and Pythagorean fuzzy entropy, in this study,
the q-rung orthopair fuzzy entropy (q-ROFE) was defined as follows.

According to the Pythagorean fuzzy entropy shown in Xue et al. [52], we found that the entropy
was mainly based on the similarity and hesitance measures, where the similarity measure between the
q-rung orthopair fuzzy numbers Ψi = (ξi, ζi) and its complement ΨC

i = (ζi, ξi) can be denoted as:

1− d
(
Ψi, ΨC

i

)
= 1−

∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣ (14)

In particular, when the membership and non-membership of the q-rung orthopair fuzzy number
is equal, denoted as ξΨ(xi) = ζΨ(xi), this indicates the system is greatly disordered and we can obtain
little useful information from the q-ROFN; thus, q−ROFE(Ψ) = 1, if ξΨ(xi) = ζΨ(xi).
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In addition, when the hesitancy of q-ROFN is equal to 1, denoted as πΨ(xi) = 1, we can also
barely derive valuable information from the q-ROFN; thus, q−ROFE(Ψ) = 1, if πΨ(xi) = 1.

Then, based on the relationship between q-ROFE and the similarity and hesitance measures,
the computing equation can be defined.

Definition 8. Given a group of q-ROFNs as Ψi = (ξi, ζi)(i = 1, 2, . . . , n), then the q-rung orthopair fuzzy
entropy (q-ROFE) is defined as:

q−ROFE(Ψi) = 1−
∣∣∣ξq

Ψ(xi) − ζ
q
Ψ(xi)

∣∣∣+ π
q
Ψ(xi) −π

q
Ψ(xi)

[
1−

∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣]
= 1−

(
ξ

q
Ψ(xi) + ζ

q
Ψ(xi)

)∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣ (15)

Thus,

q−ROFE(Ψ) =
1
n

n∑
i=1

[
1−

(
ξ

q
Ψ(xi) + ζ

q
Ψ(xi)

)∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣] (16)

Based on the basic axiom of fuzzy entropy, the q-rung orthopair fuzzy entropy (q-ROFE) will
satisfy the following properties:

(1) 0 ≤ q−ROFE(Ψ) ≤ 1;
(2) q−ROFE(Ψ) = 0, if Ψ is a crisp set;
(3) q−ROFE(Ψ) = 1, if ξq

Ψ(xi) = ζ
q
Ψ(xi), ∀x ∈ X;

(4) q−ROFE(Ψ1) < q−ROFE(Ψ2), if Ψ1 is less fuzzy than Ψ2, i.e., ζΨ1(xi) ≥ ζΨ2(xi) and ξΨ1(xi) ≤

ξΨ2(xi) for ξΨ2(xi) ≤ ζΨ2(xi) for ∀x ∈ X, or ζΨ1(xi) ≤ ζΨ2(xi) and ξΨ2(xi) ≥ ζΨ2(xi) for ξΨ2(xi) ≥

ζΨ2(xi) for ∀x ∈ X;
(5) q−ROFE(Ψ) = q−ROFE

(
ΨC

)
.

Proof.

(1) For 0 ≤ ξ
q
Ψ(xi) + ζ

q
Ψ(xi) ≤ 1 and 0 ≤

∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣ ≤ 1, we can derive 0 ≤ 1 −(
ξ

q
Ψ(xi) + ζ

q
Ψ(xi)

)∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣ ≤ 1, thus 0 ≤ q−ROFE(Ψ) ≤ 1 is proved.

(2) If Ψ is a crisp set, which indicates Ψ = (1, 0) or Ψ = (0, 1), then q−ROFE(Ψ) = 0; if q−ROFE(Ψ) =

0, we can derive
(
ξ

q
Ψ(xi) + ζ

q
Ψ(xi)

)∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣ = 1; for 0 ≤ ξq
Ψ(xi) + ζ

q
Ψ(xi) ≤ 1 and 0 ≤∣∣∣ξq

Ψ(xi) − ζ
q
Ψ(xi)

∣∣∣ ≤ 1, then ξq
Ψ(xi) + ζ

q
Ψ(xi) = 1 and

∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣ = 1; for 0 ≤ ξΨ(xi) ≤ 1 and
0 ≤ ζΨ(xi) ≤ 1, we can get ξΨ(xi) = 1, ζΨ(xi) = 0 or ξΨ(xi) = 0, ζΨ(xi) = 1, which means Ψ is a
crisp set.

(3) If ξ
q
Ψ(xi) = ζ

q
Ψ(xi), then q − ROFE(Ψ) = 1. If q − ROFE(Ψ) = 1, we can obtain(

ξ
q
Ψ(xi) + ζ

q
Ψ(xi)

)∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣ = 0, which indicates
(
ξ

q
Ψ(xi) + ζ

q
Ψ(xi)

)
= 0 or

∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣,
then we can obtain ξq

Ψ(xi) = ζ
q
Ψ(xi).
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(4) If Ψ1 is less fuzzy than Ψ2, assuming that ζΨ1(xi) ≥ ζΨ2(xi) and ξΨ1(xi) ≤ ξΨ2(xi) for ξΨ2(xi) ≤

ζΨ2(xi) for ∀x ∈ X, we can obtain:

q−ROFE(Ψ2) − q−ROFE(Ψ1)

= 1
n

n∑
i=1

[
1−

(
ξ

q
Ψ2
(xi) + ζ

q
Ψ2
(xi)

)∣∣∣∣ξq
Ψ2
(xi) − ζ

q
Ψ2
(xi)

∣∣∣∣]
−

1
n

n∑
i=1

[
1−

(
ξ

q
Ψ1
(xi) + ζ

q
Ψ1
(xi)

)∣∣∣∣ξq
Ψ1
(xi) − ζ

q
Ψ1
(xi)

∣∣∣∣]
= 1

n

n∑
i=1


(
ξ

q
Ψ1
(xi) + ζ

q
Ψ1
(xi)

)∣∣∣∣ξq
Ψ1
(xi) − ζ

q
Ψ1
(xi)

∣∣∣∣
−

(
ξ

q
Ψ2
(xi) + ζ

q
Ψ2
(xi)

)∣∣∣∣ξq
Ψ2
(xi) − ζ

q
Ψ2
(xi)

∣∣∣∣


= 1
n

n∑
i=1


(
ξ

q
Ψ1
(xi) + ζ

q
Ψ1
(xi)

)(
ζ

q
Ψ1
(xi) − ξ

q
Ψ1
(xi)

)
−

(
ξ

q
Ψ2
(xi) + ζ

q
Ψ2
(xi)

)(
ζ

q
Ψ2
(xi) − ξ

q
Ψ2
(xi)

) 
= 1

n

n∑
i=1

[
ζ

2q
Ψ1
(xi) − ξ

2q
Ψ1
(xi) − ζ

2q
Ψ2
(xi) + ξ

2q
Ψ2
(xi)

]
= 1

n

n∑
i=1


(
ζ

q
Ψ1
(xi) + ζ

q
Ψ2
(xi)

)(
ζ

q
Ψ1
(xi) − ζ

q
Ψ2
(xi)

)
+

(
ξ

q
Ψ2
(xi) + ξ

q
Ψ1
(xi)

)(
ξ

q
Ψ2
(xi) − ξ

q
Ψ1
(xi)

) 
Since 0 ≤ ζq

Ψ1
(xi)− ζ

q
Ψ2
(xi) ≤ 1 and 0 ≤ ξq

Ψ2
(xi)− ξ

q
Ψ1
(xi) ≤ 1, then we can get q−ROFE(Ψ2)− q−

ROFE(Ψ1) ≥ 0, which indicates q−ROFE(Ψ1) < q−ROFE(Ψ2); similarly, if Ψ2 is less fuzzy than
Ψ1, then q−ROFE(Ψ2) < q−ROFE(Ψ1).

(5) For a q-rung orthopair fuzzy complement set ΨC, the entropy can be depicted as:

q−ROFE
(
ΨC

)
= 1

n

n∑
i=1

[
1−

(
ζ

q
Ψ(xi) + ξ

q
Ψ(xi)

)∣∣∣ζq
Ψ(xi) − ξ

q
Ψ(xi)

∣∣∣]
= 1

n

n∑
i=1

[
1−

(
ξ

q
Ψ(xi) + ζ

q
Ψ(xi)

)∣∣∣ξq
Ψ(xi) − ζ

q
Ψ(xi)

∣∣∣] = q−ROFE(Ψ)

Thus, the property q−ROFE(Ψ) = q−ROFE
(
ΨC

)
is maintained. Therefore, all the properties are

proved. �

On account of the q-ROFE, we can determine the attribute’s weights. Suppose there are
m alternatives φi(i = 1, 2, . . . , m) and each alternative is denoted by n attributes ε j( j = 1, 2, . . . , m).
Construct the q-rung orthopair fuzzy evaluation matrix Ri j =

(
ri j

)
m×n

; if the attribute’s weights is
unknown, then we can determine the attribute’s weights using the following steps.

Step 1. Compute the q-ROFE of each element in matrix Ri j =
(
ri j

)
m×n

, and construct a q-ROFE
matrix as follows:

q−ROFEi j =


q−ROFE11 q−ROFE12 · · · q−ROFE1n
q−ROFE21 q−ROFE22 · · · q−ROFE2n

...
...

. . .
...

q−ROFEm1 q−ROFEm2 · · · q−ROFEmn


m×n

(17)

Step 2. Normalize the q-ROFE matrix to derive the normalized matrix q − ROFNEi j using the
following equation:

q−ROFNEi j =
q−ROFEi j

max(q−ROFEi1, q−ROFEi2, . . . , q−ROFEin)
(18)
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Step 3. Determine the attribute’s weights w j( j = 1, 2, . . . , n) based on the normalized matrix
q−ROFNEi j using the following equation:

w j =
1−

∑m
i=1 q−ROFNEi j

n−
∑m

i=1
∑n

j=1 q−ROFNEi j
( j = 1, 2, . . . , n) (19)

5. The Entropy-Based GLDS Method for MAGDM with q-ROFN Information

The gained and lost dominance score (GLDS) method, which was first proposed by Wu and
Liao [32], is used to choose the most desirable alternative(s) by calculating the dominance flow between
any two alternatives with respect to the attributes. The higher the gained dominance score is and
the lower the lost dominance score is, the best the alternative will be. Wu and Liao [32] studied the
consensus-based GLDS method under a probabilistic linguistic environment for selecting the best
green enterprises. Then, Fu et al. [33] extended the GLDS method to hesitant fuzzy linguistic term
sets and developed the hesitant fuzzy linguistic GLDS method for an underground mining method
selection problem. In this study, based on the q-ROFS, we proposed to combine the GLDS method
with q-ROFN, where the basic MAGDM steps are as follows.

Suppose there are m given alternatives φi(i = 1, 2, . . . , m) and each alternative is denoted by
n given attributes ε j( j = 1, 2, . . . , m). Let w j( j = 1, 2, . . . , m) be the attribute weighting vector that
satisfies 0 ≤ w j ≤ 1,

∑n
j=1 w j = 1. Construct the q-rung orthopair fuzzy decision-making evaluation

matrix Ri j =
(
ri j

)
m×n

. Then, the q-rung orthopair fuzzy GLDS method can be developed as follows.
Step 1. Compute the dominance flow DF j(φi,φk) of alternative φi over φk with respect to the

attributes ε j using the following equation:

DF j(φi,φk) =

 max
{
τ
(
ri j

)
− τ

(
rkj

)
, 0

}
, for benefit attribute ε j

max
{
τ
(
rkj

)
− τ

(
ri j

)
, 0

}
, for cos t attribute ε j

(20)

where τ(r) indicates the function of converting the q-rung orthopair fuzzy variables to the exact
numbers. To eliminate the biased information derived using different attribute values, normalize the
dominance flows DF j(φi,φk) using the following equation:

NDF j(φi,φk) =
DF j(φi,φk)√∑m

k=1
∑m

i=1

(
DF j(φi,φk)

)2
(21)

Step 2. According to the normalized dominance flows NDF j(φi,φk), we can compute the overall
gained dominance scores OGDS(φi) of alternative φi over φk with respect to the attributes ε j using the
following equation and derive the subordinate order set R1:

OGDS(φi) =
n∑

j=1

w j

m∑
k=1

NDF j(φi,φk)

 (22)

Step 3. According to the normalized dominance flows NDF j(φi,φk), we can compute the overall
lost dominance scores OLDS(φi) of alternative φi over φk with respect to the attributes ε j using the
following equation and derive the subordinate order set R2:

OLDS(φi) = max
j

(
w jmax

k

(
NDF j(φi,φk)

))
(23)
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Step 4. Normalize the subordinate order sets OGDS(φi) and OLDS(φi) to obtain the normalized
subordinate order sets NOGDS(φi) and NOLDS(φi) using the following equations:

NOGDS(φi) =
OGDS(φi)√∑m

i=1(OGDS(φi))
2

(24)

NOLDS(φi) =
OLDS(φi)√∑m

i=1(OLDS(φi))
2

(25)

Step 5. On account of the two subordinate order sets (R1 and R2) and the two normalized score
sets (NOGDS(φi) and NOLDS(φi)), we can compute the final results CSi to rank all the alternatives
using the following equation:

CSi = NOGDS(φi) ·
m−R1(φi) + 1

m(m + 1)/2
−NOLDS(φi) ·

R2(φi)

m(m + 1)/2
(26)

Based on the above computing steps, we can see that the GLDS method is robust and effective.
First, the final calculating equation can not only consider the gained and lost scores, but also take the
subordinate order set into account. Then, the GLDS method can consider both the “group utility”
(see Equation (22)) and the “individual regret” (see Equation (23)); in addition, the GLDS method can
be easily extended to other decision-making environments, including quantitative and qualitative
environments. Finally, in the decision-making process, we utilize the normalization method two times
to derive more accurate results and accelerate the decision-making speed.

6. The MAGDM Steps Based on the q-rung Orthopair Fuzzy Entropy-Based GLDS Method

Suppose there are m given alternatives φi(i = 1, 2, . . . , m) and each alternative is denoted by n
attributes ε j( j = 1, 2, . . . , m). Let w j( j = 1, 2, . . . , m) be the attribute weighting vector, which satisfies
0 ≤ w j ≤ 1,

∑n
j=1 w j = 1. Assume that there are λ experts dt(t = 1, 2, . . . ,λ) with an expert’s weighting

vector of ωt(t = 1, 2, . . . ,λ), which satisfies 0 ≤ ωt ≤ 1,
∑λ

t=1 ωt = 1. Construct the q-rung orthopair

fuzzy evaluation matrix Rt
i j =

(
rt

i j

)
m×n

. Then, the q-rung orthopair fuzzy entropy-based GLDS method

can be developed as follows.
Step 1. Collect the assessment information expressed using q-ROFNs that are given by experts

dt(t = 1, 2, . . . ,λ) and construct the decision-making evaluation matrix Rt
i j =

(
rt

i j

)
m×n

.

Step 2. Based on the expert’s weights and decision-making evaluation matrix Rt
i j =

(
rt

i j

)
m×n

,

aggregate the assessment information to derive the comprehensive evaluation matrix Ri j =
(
ri j

)
m×n

using Equation (12) or (13).

Step 3. According to the comprehensive evaluation matrix Ri j =
(
ri j

)
m×n

, compute the q-rung

orthopair fuzzy entropy (q-ROFE) using Equation (16) and then determine the attribute weights using
Equations (17)–(19).

Step 4. Compute the dominance flows DF j(φi,φk) of alternative φi over φk with respect to the
attributes ε j using Equations (4) and (20), and obtain the normalized dominance flow NDF j(φi,φk)

using Equation (21).
Step 5. Determine the overall gained dominance scores OGDS(φi) and the overall lost dominance

score OLDS(φi) using Equations (22) and (23), and derive the subordinate order set R1 and R2. Then,
normalize Equations (22) and (23) to obtain Equations (24) and (25).

Step 6. On account of the two-subordinate-order sets (R1 and R2) and the two-normalized-score
sets (NOGDS(φi) and NOLDS(φi)), we can compute the final results CSi to rank all the alternatives
using Equation (26).
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Step 7. End.

7. Numerical Example and Comparative Analysis

7.1. Numerical Example

The economic development of China has currently entered a "new normal," which means the
China has left the past era of extensive and high-growth and turned to a stage of intensive structural
and high-quality development. As the times require, a PPP model emerged as an important link for
pushing the supply-side structural reform forward and improving the efficiency of the public service
supply. Within only 4 years, PPP has entered the fast lane of rapid development and become the
mainstream model of infrastructure investment in China since the formal promotion of the National
Committee in 2014. By the end of 2018, up to 12,554 PPP projects were uploaded to the database of
the Ministry of Finance, totaling ¥17.54 trillion in investment. With the development of PPP, many
problems have gradually emerged. On the one hand, because of the immature PPP financing market
and few financing channels, investors face difficulties obtaining financial support, leading to the low
project implementation rate. On the other hand, the huge market stock is difficult to revitalize due to the
poor exit channels, which causes increasing concerns regarding social capital investment. To eliminate
these negative aspects that affect and restrict the PPP development, in 2017, the National Development
and Reform Commission and the Ministry of Finance issued papers in succession to encourage PPP
securitization. As a way of structured financing, securitization can provide flexible and diversified
standardized products, connect the main body of PPP project with the main body of multi-investment
effectively, and promote the optimal allocation of project resources. PPP securitization of China is still
in the initial exploration stage such that successful cases are relatively few, the existing studies are
mainly qualitative analyses, and the research dimension is relatively singular. Analyses have failed to
produce an in-depth discussion of the PPP securitization operation mechanism and are unable to pay
sufficient attention to the influencing factors of the PPP securitization success in particular. Thus, how
to choose the PPP project is an interesting MAGDM issue [54–61]. In this section, a numerical example
for the social capital selection of a PPP project is given with q-ROFNs to demonstrate the method
proposed in this paper. There were five possible PPP projects φi(i = 1, 2, 3, 4, 5) to select. Three experts
selected four attributes to evaluate the five PPP projects: (1) ε1 is the financial capacity, (2) ε2 is the
technical ability, (3) ε3 is the management ability, and (4) ε4 is the reputation level. The five possible PPP
projects φi(i = 1, 2, 3, 4, 5) were evaluated by the decision-maker in terms of the above four attributes
using the q-rung orthopair fuzzy information (the expert’s weighting vector was considered to be
ω = (0.4, 0.2, 0.4)T).

Step 1. The assessment information expressed by q-ROFNs, which were given by experts
dt(t = 1, 2, . . . ,λ), were collected and used to construct the decision-making evaluation matrix

Rt
i j =

(
rt

i j

)
m×n

:

R1 =


(0.7, 0.6) (0.5, 0.4) (0.6, 0.3) (0.4, 0.7)
(0.8, 0.5) (0.4, 0.6) (0.5, 0.4) (0.3, 0.6)
(0.9, 0.7) (0.6, 0.8) (0.7, 0.5) (0.8, 0.4)
(0.5, 0.3) (0.4, 0.2) (0.6, 0.3) (0.2, 0.5)
(0.4, 0.6) (0.3, 0.5) (0.7, 0.3) (0.6, 0.8)


,

R2 =


(0.5, 0.4) (0.6, 0.5) (0.7, 0.2) (0.5, 0.6)
(0.7, 0.6) (0.5, 0.8) (0.6, 0.3) (0.4, 0.5)
(0.8, 0.4) (0.6, 0.2) (0.5, 0.7) (0.6, 0.3)
(0.6, 0.5) (0.3, 0.5) (0.7, 0.5) (0.6, 0.4)
(0.5, 0.8) (0.7, 0.4) (0.6, 0.2) (0.7, 0.3)


,
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R3 =


(0.6, 0.7) (0.3, 0.8) (0.7, 0.4) (0.5, 0.6)
(0.5, 0.8) (0.2, 0.5) (0.6, 0.3) (0.7, 0.4)
(0.6, 0.5) (0.7, 0.5) (0.4, 0.6) (0.6, 0.5)
(0.7, 0.4) (0.9, 0.4) (0.7, 0.3) (0.2, 0.8)
(0.8, 0.7) (0.3, 0.6) (0.4, 0.7) (0.7, 0.2)


.

Step 2. Based on the expert’s weights and decision-making evaluation matrix Rt
i j =

(
rt

i j

)
m×n

,

the assessment information was aggregated to obtain the comprehensive evaluation matrix

Ri j =
(
ri j

)
m×n

using the q-ROFHWA operator:

R =


(0.6287, 0.5933) (0.4683, 0.5656) (0.6638, 0.3109) (0.4647, 0.6394)
(0.6892, 0.6354) (0.3759, 0.5964) (0.5639, 0.3369) (0.5405, 0.4941)
(0.7974, 0.5522) (0.6439, 0.5202) (0.5712, 0.5775) (0.6970, 0.4139)
(0.6128, 0.3736) (0.7075, 0.3186) (0.6638, 0.3330) (0.3623, 0.5895)
(0.6368, 0.6794) (0.4437, 0.5160) (0.5893, 0.3973) (0.6638, 0.3945)


.

Step 3. According to the comprehensive evaluation matrix Ri j =
(
ri j

)
m×n

, the q-rung orthopair

fuzzy entropy (q-ROFE) was computed using Equation (16):

q−ROFEi j =


0.9819 0.9778 0.9154 0.9418
0.9586 0.9578 0.9693 0.9896
0.7713 0.9485 0.9976 0.8904
0.9498 0.8756 0.9158 0.9603
0.9684 0.9888 0.9620 0.9183


.

Then, the attribute weights were determined using Equations (17)–(19):
w1 = 0.2448, w2 = 0.2525, w3 = 0.2533, w4 = 0.2494.

Step 4. The dominance flows DF j(φi,φk) of alternative φi over φk with respect to the attributes ε j
was computed using Equations (4) and (20). If all the attributes are beneficial, the dominance flow can
be derived as follows:

DF1(φi,φk) =


0.0000 0.0000 0.0000 0.0000 0.0475
0.0156 0.0000 0.0000 0.0000 0.0631
0.1495 0.1339 0.0000 0.0803 0.1970
0.0692 0.0536 0.0000 0.0000 0.1167
0.0000 0.0000 0.0000 0.0000 0.0000


,

DF2(φi,φk) =


0.0000 0.0404 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.1022 0.1426 0.0000 0.0000 0.0881
0.2000 0.2404 0.0978 0.0000 0.1859
0.0141 0.0545 0.0000 0.0000 0.0000


,

DF3(φi,φk) =


0.0000 0.0606 0.1343 0.0034 0.0602
0.0000 0.0000 0.0737 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0572 0.1309 0.0000 0.0568
0.0000 0.0004 0.0741 0.0000 0.0000


,
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DF4(φi,φk) =


0.0000 0.0000 0.0000 0.0000 0.0000
0.0992 0.0000 0.0000 0.0973 0.0000
0.2143 0.1152 0.0000 0.2125 0.0183
0.0019 0.0000 0.0000 0.0000 0.0000
0.1960 0.0969 0.0000 0.1942 0.0000


.

Step 5. The normalized dominance flows NDF j(φi,φk) was derived using Equation (21) and the
overall gained dominance scores OGDS(φi) and the overall lost dominance scores OLDS(φi) were
determined using Equations (22) and (23). Then, the subordinate order sets R1 and R2 were derived
as follows.

The overall gained dominance scores OGDS(φi) were:

OGDS(φ1) = 0.3259, OGDS(φ2) = 0.2405, OGDS(φ3) = 0.9085,
OGDS(φ4) = 0.8533, OGDS(φ5) = 0.3828.

The overall lost dominance scores OLDS(φi) were:

OLDS(φ1) = 0.1390, OLDS(φ2) = 0.0762, OLDS(φ3) = 0.1433,
OLDS(φ4) = 0.1410, OLDS(φ5) = 0.1068.

Thus, the subordinate order sets R1 and R2 were: R1 = (0.3259, 0.2405, 0.9085, 0.8533, 0.3828)
and R2 = (0.1390, 0.0762, 0.1433, 0.1410, 0.1068). Then, the OGDS(φi) and OLDS(φi) were normalized
using Equations (24) and (25) to obtain the following.

The normalized overall gained dominance scores NOGDS(φi) were:

NOGDS(φ1) = 0.2387, NOGDS(φ2) = 0.1762, NOGDS(φ3) = 0.6654,
NOGDS(φ4) = 0.6250, NOGDS(φ5) = 0.2804.

The normalized overall lost dominance scores NOLDS(φi) were:

NOLDS(φ1) = 0.1390, NOLDS(φ2) = 0.0762, NOLDS(φ3) = 0.1433,
NOLDS(φ4) = 0.1410, NOLDS(φ5) = 0.1068.

Step 6. On account of the two subordinate order sets (R1 and R2) and two normalized score sets
(NOGDS(φi) and NOLDS(φi)), we computed the final results CSi: CS1 = 0.0856, CS2 = 0.0663, CS3 =

0.2209, CS4 = 0.2097, CS5 = 0.1022. Then, we obtained the ordering of all PPP projects as φ3 > φ4 >
φ5 > φ1 > φ2, where the most desirable PPP project was φ3.

7.2. Comparative Analysis

To further verify the effective and scientific nature of our proposed approach, in this part, we shall
compare the q-rung orthopair fuzzy entropy-based GLDS method with other existing methods, such as
the q-ROFWA and q-ROFWG operators presented by Liu and Wang [21] and the q-rung orthopair fuzzy
cosine similarity measures given in Wang et al. [62]. The comparative analysis process is listed below.

7.2.1. Comparison with the q-ROFWA and q-ROFWG Operators

Based on the comprehensive evaluation matrix Ri j =
(
ri j

)
m×n

and the attribute weights w j derived

using the q-ROFE, we aggregated the comprehensive assessment information using the q-ROFWA and
q-ROFWG operators. The fused results ri are listed as follows.

For the q-ROFWA operator, the fused results ri were:

r1 = (0.5754, 0.5071), r2 = (0.5691, 0.5001), r3 = (0.6940, 0.5120),
r4 = (0.6213, 0.3906), r5 = (0.5979, 0.4831).
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Then, based on the score functions, we obtained: SC(r1) = 0.5300, SC(r2) = 0.5296, SC(r3) =

0.6000, SC(r4) = 0.5901, SC(r5) = 0.5505. The ordering of all PPP projects was φ3 > φ4 > φ5 > φ1 > φ2,
where the most desirable PPP project was φ3.

For the q-ROFWG operator, the fused results ri were:

r1 = (0.5487, 0.5582), r2 = (0.5290, 0.5432), r3 = (0.6713, 0.5247),
r4 = (0.5688, 0.4386), r5 = (0.5759, 0.5304).

Then, based on the score functions, we obtained: SC(r1) = 0.4957, SC(r2) =

0.4939,SC(r3) = 0.5791, SC(r4) = 0.5498, SC(r5) = 0.5209. The ordering of all PPP projects was φ3 >
φ4 > φ5 > φ1 > φ2, where the most desirable alternative is φ3.

From the above comparative analysis results, by utilizing the q-ROFWA and q-ROFWG
operators, we obtained the same rank of all alternatives as that derived using the
q-rung-orthopair-fuzzy-entropy-based GLDS method, which indicates that our developed approach is
effective at managing actual MADM problems. However, the q-ROFWA and q-ROFWG operators can
only derive the score results to rank all alternatives and fail at reflecting the dominance flow of the
alternatives over the attributes. In our developed q-rung orthopair fuzzy entropy-based GLDS method,
the dominance flow can be reflected using step 4. Moreover, Liu and Wang’s methods do not take the
unknown weights into account; in their paper, the attribute weights were assumed to be known but
this is unrealistic in a real MAGDM environment. The q-rung-orthopair-fuzzy-entropy-based GLDS
method can overcome this limitation since the attribute weights can be derived using fuzzy entropy,
which is reasonable and scientific.

7.2.2. Comparison with the q-Rung Orthopair Fuzzy Cosine Similarity Measures

Based on the comprehensive evaluation matrix Ri j =
(
ri j

)
m×n

, we obtained the ideal solution

alternative φ+ by utilizing the methods shown in Wang et al. [62] as follows:

φ+ =
{
(0.7974, 0.3736), (0.7075, 0.3186), (0.6638, 0.3109), (0.6970, 0.3945)

}
.

Then, based on attribute weights w j derived using the q-ROFE and the q-rung orthopair fuzzy
cosine similarity measures, we derived:

q−ROFWCS(φ1,φ+)

=


0.2448× cos

[
π
4

(∣∣∣0.62873
− 0.79743

∣∣∣+ ∣∣∣0.59333
− 0.37363

∣∣∣)]
+0.2525× cos

[
π
4

(∣∣∣0.46833
− 0.70753

∣∣∣+ ∣∣∣0.56563
− 0.31863

∣∣∣)]
+0.2533× cos

[
π
4

(∣∣∣0.66383
− 0.66383

∣∣∣+ ∣∣∣0.31093
− 0.31093

∣∣∣)]
+0.2494× cos

[
π
4

(∣∣∣0.46473
− 0.69703

∣∣∣+ ∣∣∣0.63943
− 0.39453

∣∣∣)]


= 0.9601

.

Similarly, we obtained:

q−ROFWCS(φ2,φ+) = 0.9656, q−ROFWCS(φ3,φ+) = 0.9904,
q−ROFWCS(φ4,φ+) = 0.9798, q−ROFWCS(φ5,φ+) = 0.9686.

Thus, the ordering of all PPP projects was φ3 > φ4 > φ5 > φ2 > φ1, where the most deriarable
PPP project was φ3.

From the above comparative analysis results, according to the the q-rung orthopair fuzzy
cosine similarity measures, the ordering was slightly different than that found using the
q-rung-orthopair-fuzzy-entropy-based GLDS method, which indicates that our developed approach is
effective at managing actual MAGDM problems. However, the q-rung orthopair fuzzy cosine similarity
measures are also limited in their reflection of the dominance flow of the alternatives over the attributes
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and consideration of the unknown weights, which is in contrast with our method over the q-rung
orthopair fuzzy cosine similarity measures.

7.2.3. Comparison with Other Existing Methods

In addition, numerous scholars have studied the q-ROFSs, such as the BM [27,28] operator,
Heronian mean (HM) [29,30,63] operator, Hamy mean (HM) [64] operator and MSM [22] operator.
The contribution of different authors regarding q-ROFNs are listed in Table 1. All of these methods can
handle MADM problems with q-ROFSs and select the best alternatives using score results, but when we
utilized these mentioned methods, the DM’s and attribute’s weights needed to be completely known,
and at the same time, the process of decision-making was only up to a decision-maker. However, due to
the complex environment and the subjectivity of the decision-maker, the decision-making process is
always uncertain and the weights information is partly known or completely unknown. When we face
such issues, the q-ROFE developed in this paper can be more useful for managing MADM applications.
Furthermore, to obtain more accurate and effective decision-making results, the evaluation information
is given using three DMs in this paper rather than only one DM in other existing literature.

Table 1. The contribution of different authors regarding q-ROFNs.

Authors Production Consider the
Interrelationship

Consider the
Parameter

Vector

Consider the
Dominance

Flow

Consider the
Unknown
Weights

Liu and Wang [21] q-ROFWA operator No No No No
Liu and Wang [21] q-ROFWG operator No No No No

Wei et al. [22] q-ROFMSM operators Yes Yes No No
Bai et al. [23] q-ROF-partitioned-MSM operators Yes Yes No No
Liu et al. [24] q-ROF-power-MSM operators Yes Yes No No
Liu et al. [25] q-ROFEBM operators Yes Yes No No

Liu and Liu [26] q-ROFBM operators Yes Yes No No
Liu and Liu [27] Lq-ROF-power-BM operators Yes Yes No No

Yang and Pang [28] q-ROF-partitioned-BM operators Yes Yes No No
Wei et al. [29] q-R2TLOFHM operators Yes Yes No No
Liu et al. [30] q-ROFHM operators Yes Yes No No
Xu et al. [63] q-RDHOFHM operators Yes Yes No No

Proposed model Entropy-based GLDS method Yes Yes Yes Yes

q-ROFWA operator: q-rung orthopair fuzzy weighted averaging operator; q-ROFWG operator: q-rung orthopair
fuzzy weighted geometric operator; q-ROFMSM operators: q-rung orthopair fuzzy Maclaurin symmetric mean
operator; q-ROF-partitioned-MSM operators: q-rung orthopair fuzzy partitioned Maclaurin symmetric mean
operator; q-ROF-power-MSM operators: q-rung orthopair fuzzy power Maclaurin symmetric mean operator;
q-ROFEBM operators: q-rung orthopair fuzzy extended Bonferroni mean; q-ROFBM operators: q-rung orthopair
fuzzy Bonferroni mean operators; Lq-ROF-power-BM operators: linguistic q-rung orthopair fuzzy power Bonferroni
mean operators; q-ROF-partitioned-BM operators: q-rung orthopair fuzzy partitioned Bonferroni mean operators;
q-R2TLOFHM operators: q-rung 2-tuple linguistic orthopair fuzzy Heronian mean operators; q-ROFHM operators:
q-rung orthopair fuzzy Heronian mean operators; q-RDHOFHM operators: q-rung dual hesitant Fuzzy orthopair
fuzzy Heronian mean operators; Entropy-based GLDS method: Entropy-based gained and lost dominance
score method.

8. Conclusions

In this paper, a q-rung orthopair fuzzy entropy-based GLDS method was developed to manage
MAGDM issues. Considering the inter-relationship between the q-ROFNs, we developed the
q-ROFHWA and q-ROFHWG operators to fuse the assessment information. Then, because the
attribute weights are usually partly known or completely unknown in complicated application
environments, we proposed a q-rung orthopair fuzzy entropy to determine the attribute weights. Next,
to depict the dominance flow of alternatives over attributes, the GLDS method was put forward to
solve q-rung orthopair fuzzy MAGDM issues. Therefore, the q-rung-orthopair-fuzzy-entropy-based
GLDS model was built based on a q-ROFHWA operator, q-ROFE, and a traditional GLDS method.
In the end, we took a concrete case about the social capital selection of PPP projects to demonstrate our
defined model and verify its accuracy. The main advantage of our method was the consideration of
the dominance flow and the unknown weights, which indicates that our method is valid for managing
actual decision-making issues. However, in our method, the dominance flow is simply derived using
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the difference value between score results, which will lead to information loss; thus, in the future, we
shall continue to study the MAGDM issues with our developed method and find a more suitable way
to describe the dominance flow in other decision-making domains [65–70].
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